Difference between revisions of "RocG"

From SubtiWiki
Jump to: navigation, search
Line 33: Line 33:
 
<br/><br/><br/><br/><br/><br/>
 
<br/><br/><br/><br/><br/><br/>
  
 +
 +
= [[Categories]] containing this gene/protein =
 +
{{SubtiWiki category|[[utilization of amino acids]]}},
 +
{{SubtiWiki category|[[trigger enzyme]]}}
 +
 +
= This gene is a member of the following [[regulons]] =
 +
{{SubtiWiki regulon|[[AhrC regulon]]}},
 +
{{SubtiWiki regulon|[[CcpA regulon]]}},
 +
{{SubtiWiki regulon|[[RocR regulon]]}},
 +
{{SubtiWiki regulon|[[SigL regulon]]}}
  
 
=The gene=
 
=The gene=
Line 53: Line 63:
  
  
= Categories containing this gene/protein =
+
 
{{SubtiWiki category|[[utilization of amino acids]]}},
 
{{SubtiWiki category|[[trigger enzyme]]}}
 
 
=The protein=
 
=The protein=
  

Revision as of 00:31, 9 December 2010

  • Description: trigger enzyme: catabolic glutamate dehydrogenase induced by arginine, ornithine or proline, subject to carbon catabolite repression

Gene name rocG
Synonyms
Essential no
Product trigger enzyme: glutamate dehydrogenase (major)
Function arginine utilization, controls the activity of GltC
Metabolic function and regulation of this protein in SubtiPathways:
Ammonium/ glutamate
MW, pI 46.2 kDa, 6.28
Gene length, protein length 1272 bp, 424 amino acids
Immediate neighbours rocA, yweA
Get the DNA and protein sequences
(Barbe et al., 2009)
Genetic context
RocG context.gif
This image was kindly provided by SubtiList








Categories containing this gene/protein

utilization of amino acids, trigger enzyme

This gene is a member of the following regulons

AhrC regulon, CcpA regulon, RocR regulon, SigL regulon

The gene

Basic information

  • Locus tag: BSU37790

Phenotypes of a mutant

Poor growth on complex media such as SP (sporulation medium). No growth in minimal media with arginine as the only carbon source. Rapid accumulation of suppressor mutants (gudB1)

Database entries

  • DBTBS entry: [1]
  • SubtiList entry: [2]

Additional information

The protein

Basic information/ Evolution

  • Catalyzed reaction/ biological activity: L-glutamate + H2O + NAD+ = 2-oxoglutarate + NH3 + NADH (according to Swiss-Prot) L-glutamate + H(2)O + NAD(+) = 2-oxoglutarate + NH(3) + NADH, controls the activity of the GltC transcription activator PubMed
  • Protein family: Glu/Leu/Phe/Val dehydrogenases family (according to Swiss-Prot) Glu/Leu/Phe/Val dehydrogenases family
  • Paralogous protein(s): GudB

Extended information on the protein

  • Kinetic information:
  • Domains:
  • Modification:
  • Cofactor(s):
  • Effectors of protein activity:
  • Interactions: RocG-GltC, this interaction prevents transcription activation of the gltA-gltB operon by GltC PubMed
  • Localization:

Database entries

  • Structure: 3K92 (super-repressor mutant that is capable of constitutive inactivation of GltC, E93K mutation) PubMed
  • KEGG entry: [3]

Additional information

Expression and regulation

  • Regulation:
  • Additional information:

Activation by RocR requires binding of RocR to a downstream element PubMed

Biological materials

  • Mutant: GP747 (spc), GP726 (aphA3), GP810 (tet) available in Stülke lab
  • Expression vector:
    • expression of native rocG in B. subtilis: pGP529 (in pBQ200), available in Stülke lab
    • for purification of RocG carrying an N-terminal Strep-tag: pGP902 (in pGP172), a series of rocG variants is also available in pGP172, available in Stülke lab
  • lacZ fusion:
  • GFP fusion:
  • two-hybrid system: B. pertussis adenylate cyclase-based bacterial two hybrid system (BACTH), available in Stülke lab
  • Antibody: available in Stülke lab

Labs working on this gene/protein

Linc Sonenshein, Tufts University, Boston, MA, USA Homepage

Jörg Stülke, University of Göttingen, Germany Homepage

Your additional remarks

References

Enzymatic activity of RocG

Katrin Gunka, Joseph A Newman, Fabian M Commichau, Christina Herzberg, Cecilia Rodrigues, Lorraine Hewitt, Richard J Lewis, Jörg Stülke
Functional dissection of a trigger enzyme: mutations of the bacillus subtilis glutamate dehydrogenase RocG that affect differentially its catalytic activity and regulatory properties.
J Mol Biol: 2010, 400(4);815-27
[PubMed:20630473] [WorldCat.org] [DOI] (I p)

Shigeki Kada, Masahiro Yabusaki, Takayuki Kaga, Hitoshi Ashida, Ken-ichi Yoshida
Identification of two major ammonia-releasing reactions involved in secondary natto fermentation.
Biosci Biotechnol Biochem: 2008, 72(7);1869-76
[PubMed:18603778] [WorldCat.org] [DOI] (I p)

Fabian M Commichau, Katrin Gunka, Jens J Landmann, Jörg Stülke
Glutamate metabolism in Bacillus subtilis: gene expression and enzyme activities evolved to avoid futile cycles and to allow rapid responses to perturbations of the system.
J Bacteriol: 2008, 190(10);3557-64
[PubMed:18326565] [WorldCat.org] [DOI] (I p)

Md Iqbal Hassan Khan, Kousuke Ito, Hyeung Kim, Hiroyuki Ashida, Takahiro Ishikawa, Hitoshi Shibata, Yoshihiro Sawa
Molecular properties and enhancement of thermostability by random mutagenesis of glutamate dehydrogenase from Bacillus subtilis.
Biosci Biotechnol Biochem: 2005, 69(10);1861-70
[PubMed:16244435] [WorldCat.org] [DOI] (P p)

Iqbal Hassan Khan, Hyeung Kim, Hiroyuki Ashida, Takahiro Ishikawa, Hitoshi Shibata, Yoshihiro Sawa
Altering the substrate specificity of glutamate dehydrogenase from Bacillus subtilis by site-directed mutagenesis.
Biosci Biotechnol Biochem: 2005, 69(9);1802-5
[PubMed:16195607] [WorldCat.org] [DOI] (P p)

B R Belitsky, A L Sonenshein
Role and regulation of Bacillus subtilis glutamate dehydrogenase genes.
J Bacteriol: 1998, 180(23);6298-305
[PubMed:9829940] [WorldCat.org] [DOI] (P p)


Function in the control of GltC activity


Expression of rocG


Structural analysis of glutamate dehydrogenase

Katrin Gunka, Joseph A Newman, Fabian M Commichau, Christina Herzberg, Cecilia Rodrigues, Lorraine Hewitt, Richard J Lewis, Jörg Stülke
Functional dissection of a trigger enzyme: mutations of the bacillus subtilis glutamate dehydrogenase RocG that affect differentially its catalytic activity and regulatory properties.
J Mol Biol: 2010, 400(4);815-27
[PubMed:20630473] [WorldCat.org] [DOI] (I p)

T J Stillman, P J Baker, K L Britton, D W Rice
Conformational flexibility in glutamate dehydrogenase. Role of water in substrate recognition and catalysis.
J Mol Biol: 1993, 234(4);1131-9
[PubMed:8263917] [WorldCat.org] [DOI] (P p)