RNA polymerase

From SubtiWiki
Revision as of 17:34, 4 January 2012 by Jstuelk (talk | contribs) (Temporary interaction partners)
Jump to: navigation, search
Parent categories
Neighbouring categories
Related categories







The enzyme responsible for transcription

Components of the RNA polymerase

Core subunits

Sigma factors

  • In addition to the housekeeping sigma factor, SigA, there are several other sigma factors with different promoter recognition specifiity that are active under specific conditions (such as stress or sporulation)

Small accessory subunits

  • RpoE: delta subunit
  • YkzG: epsilon subunit
  • YloH: omega subunit

Other interaction partners

Temporary interaction partners

  • Spx: transcription regulator, interacts with RpoA
  • MgsR: transcription regulator orthologous to Spx, interacts with RpoA
  • Btr: transcription activator PubMed


Back to protein-protein interactions

References

Reviews

The structure of RNA polymerase

Elecia B Johnston, Peter J Lewis, Renate Griffith
The interaction of Bacillus subtilis sigmaA with RNA polymerase.
Protein Sci: 2009, 18(11);2287-97
[PubMed:19735077] [WorldCat.org] [DOI] (I p)

Sergei Borukhov, Evgeny Nudler
RNA polymerase holoenzyme: structure, function and biological implications.
Curr Opin Microbiol: 2003, 6(2);93-100
[PubMed:12732296] [WorldCat.org] [DOI] (P p)

Katsuhiko S Murakami, Seth A Darst
Bacterial RNA polymerases: the wholo story.
Curr Opin Struct Biol: 2003, 13(1);31-9
[PubMed:12581657] [WorldCat.org] [DOI] (P p)

S A Darst
Bacterial RNA polymerase.
Curr Opin Struct Biol: 2001, 11(2);155-62
[PubMed:11297923] [WorldCat.org] [DOI] (P p)

Important original publications: PubMed

Yoko Kusuya, Ken Kurokawa, Shu Ishikawa, Naotake Ogasawara, Taku Oshima
Transcription factor GreA contributes to resolving promoter-proximal pausing of RNA polymerase in Bacillus subtilis cells.
J Bacteriol: 2011, 193(12);3090-9
[PubMed:21515770] [WorldCat.org] [DOI] (I p)

Houra Merrikh, Cristina Machón, William H Grainger, Alan D Grossman, Panos Soultanas
Co-directional replication-transcription conflicts lead to replication restart.
Nature: 2011, 470(7335);554-7
[PubMed:21350489] [WorldCat.org] [DOI] (I p)