Difference between revisions of "T-box"

From SubtiWiki
Jump to: navigation, search
(Reviews on T-box regulation)
 
(9 intermediate revisions by 2 users not shown)
Line 24: Line 24:
  
 
* Induction by leucine limitation
 
* Induction by leucine limitation
** ''[[leuS]]'', ''[[ilvB]]-[[ilvH]]-[[ilvC]]-[[leuA]]-[[leuA]]-[[leuC]]-[[leuD]]''
+
** ''[[leuS]]'', ''[[ilvB]]-[[ilvH]]-[[ilvC]]-[[leuA]]-[[leuA]]-[[leuC]]-[[leuD]]'', ''[[yvbW]]''
  
 
* Induction by phenyalanine limitation
 
* Induction by phenyalanine limitation
Line 36: Line 36:
  
 
* Induction by threonine limitation
 
* Induction by threonine limitation
** ''[[thrS]], [[thrZ]]''
+
** ''[[thrS]], [[thrZ]]-[[ywhA]]''
  
 
* Induction by tryptophan limitation
 
* Induction by tryptophan limitation
Line 49: Line 49:
 
==Structure of a T-box ribowsitch==
 
==Structure of a T-box ribowsitch==
  
<pubmed> 12547201</pubmed>
+
<pubmed>28621923 12547201 31740854  </pubmed>
  
 +
==Reviews on T-box regulation==
  
==Reviews on T-box regulation==
+
<pubmed> 19258532,7527891, 11917026 ,8348614,17381302 10546897 19932103 18625071 24954903  24816551  32882008</pubmed>
 +
 
 +
=See also:=
 +
* [[RNA switch]]
  
<pubmed> 19258532,7527891, 11917026 ,8348614,17381302 10546897 </pubmed>
+
=Back to [[regulons]]=

Latest revision as of 08:40, 5 January 2021

The T-box element is an RNA switch that controls genes involved in amino acid metabolism.

In the absence of an amino acid, the uncharged tRNA binds the T-box region in the leader region of the mRNA of the controlled gene/ operon and thereby prevents the formation of a transcription terminator. The result is gene expression of the target gene in the absence of the specific amino acid.

Complete list of genes controlled by T-box elements

  • Induction by alanine limitation
  • Induction by aspartate limitation
  • Induction by histidine limitation
  • Induction by phenyalanine limitation
  • Induction by serine limitation
  • Induction by tyrosine limitation

Structure of a T-box ribowsitch

Shuang Li, Zhaoming Su, Jean Lehmann, Vassiliki Stamatopoulou, Nikoleta Giarimoglou, Frances E Henderson, Lixin Fan, Grigore D Pintilie, Kaiming Zhang, Muyuan Chen, Steven J Ludtke, Yun-Xing Wang, Constantinos Stathopoulos, Wah Chiu, Jinwei Zhang
Structural basis of amino acid surveillance by higher-order tRNA-mRNA interactions.
Nat Struct Mol Biol: 2019, 26(12);1094-1105
[PubMed:31740854] [WorldCat.org] [DOI] (I p)

Xianyang Fang, Malgorzata Michnicka, Yikan Zhang, Yun-Xing Wang, Edward P Nikonowicz
Capture and Release of tRNA by the T-Loop Receptor in the Function of the T-Box Riboswitch.
Biochemistry: 2017, 56(28);3549-3558
[PubMed:28621923] [WorldCat.org] [DOI] (I p)

Melinda S Gerdeman, Tina M Henkin, Jennifer V Hines
Solution structure of the Bacillus subtilis T-box antiterminator RNA: seven nucleotide bulge characterized by stacking and flexibility.
J Mol Biol: 2003, 326(1);189-201
[PubMed:12547201] [WorldCat.org] [DOI] (P p)


Reviews on T-box regulation

Jorge A Marchand, Merrick D Pierson Smela, Thomas H H Jordan, Kamesh Narasimhan, George M Church
TBDB: a database of structurally annotated T-box riboswitch:tRNA pairs.
Nucleic Acids Res: 2021, 49(D1);D229-D235
[PubMed:32882008] [WorldCat.org] [DOI] (I p)

Jinwei Zhang, Adrian R Ferré-D'Amaré
Direct evaluation of tRNA aminoacylation status by the T-box riboswitch using tRNA-mRNA stacking and steric readout.
Mol Cell: 2014, 55(1);148-55
[PubMed:24954903] [WorldCat.org] [DOI] (I p)

Tina M Henkin
The T box riboswitch: A novel regulatory RNA that utilizes tRNA as its ligand.
Biochim Biophys Acta: 2014, 1839(10);959-963
[PubMed:24816551] [WorldCat.org] [DOI] (P p)

Nicholas J Green, Frank J Grundy, Tina M Henkin
The T box mechanism: tRNA as a regulatory molecule.
FEBS Lett: 2010, 584(2);318-24
[PubMed:19932103] [WorldCat.org] [DOI] (I p)

Ana Gutiérrez-Preciado, Tina M Henkin, Frank J Grundy, Charles Yanofsky, Enrique Merino
Biochemical features and functional implications of the RNA-based T-box regulatory mechanism.
Microbiol Mol Biol Rev: 2009, 73(1);36-61
[PubMed:19258532] [WorldCat.org] [DOI] (I p)

Michiel Wels, Tom Groot Kormelink, Michiel Kleerebezem, Roland J Siezen, Christof Francke
An in silico analysis of T-box regulated genes and T-box evolution in prokaryotes, with emphasis on prediction of substrate specificity of transporters.
BMC Genomics: 2008, 9;330
[PubMed:18625071] [WorldCat.org] [DOI] (I e)

T M Henkin, F J Grundy
Sensing metabolic signals with nascent RNA transcripts: the T box and S box riboswitches as paradigms.
Cold Spring Harb Symp Quant Biol: 2006, 71;231-7
[PubMed:17381302] [WorldCat.org] [DOI] (P p)

Frank J Grundy, Tessa R Moir, Margaret T Haldeman, Tina M Henkin
Sequence requirements for terminators and antiterminators in the T box transcription antitermination system: disparity between conservation and functional requirements.
Nucleic Acids Res: 2002, 30(7);1646-55
[PubMed:11917026] [WorldCat.org] [DOI] (I p)

M Pelchat, J Lapointe
Aminoacyl-tRNA synthetase genes of Bacillus subtilis: organization and regulation.
Biochem Cell Biol: 1999, 77(4);343-7
[PubMed:10546897] [WorldCat.org] (P p)

T M Henkin
tRNA-directed transcription antitermination.
Mol Microbiol: 1994, 13(3);381-7
[PubMed:7527891] [WorldCat.org] [DOI] (P p)

F J Grundy, T M Henkin
tRNA as a positive regulator of transcription antitermination in B. subtilis.
Cell: 1993, 74(3);475-82
[PubMed:8348614] [WorldCat.org] [DOI] (P p)


See also:

Back to regulons