Difference between revisions of "Rny"
Line 84: | Line 84: | ||
* '''Effectors of protein activity:''' appears sensitive to downstream secondary structure, [http://www.ncbi.nlm.nih.gov/pubmed/19779461 PubMed] | * '''Effectors of protein activity:''' appears sensitive to downstream secondary structure, [http://www.ncbi.nlm.nih.gov/pubmed/19779461 PubMed] | ||
− | * '''Interactions:''' [[Rny]]-[[PfkA]], [[Rny]]-[[Eno]], [[Rny]]-[[PnpA]], [[Rny]]-[[RnjA]] | + | * '''Interactions:''' [[Rny]]-[[PfkA]] {{PubMed|19193632}}, [[Rny]]-[[Eno]] {{PubMed|19193632}}, [[Rny]]-[[PnpA]] {{PubMed|19193632}}, [[Rny]]-[[RnjA]] {{PubMed|19193632}}, [[Rny]]-[[CshA]] {{PubMed|20572937}} |
+ | |||
* '''Localization:''' cell membrane, single-pass membrane protein {{PubMed|18763711,17005971,19820159}} | * '''Localization:''' cell membrane, single-pass membrane protein {{PubMed|18763711,17005971,19820159}} | ||
Line 145: | Line 146: | ||
=References= | =References= | ||
− | <pubmed>18763711,19193632,17005971 19779461 19820159 20418391 20525796 </pubmed> | + | <pubmed>18763711,19193632,17005971 19779461 19820159 20418391 20525796 20572937</pubmed> |
[[Category:Protein-coding genes]] | [[Category:Protein-coding genes]] |
Revision as of 09:26, 25 June 2010
- Description: RNase Y, 5' end sensitive endoribonuclease, involved in the degradation/processing of mRNA
Gene name | rny |
Synonyms | ymdA |
Essential | yes |
Product | RNase Y |
Function | Initiates S-box riboswitch RNA turnover, required for the processing of the gapA operon mRNA, depletion of RNase Y increases bulk mRNA stability. |
Regulatory function of this protein in SubtiPathways: Central C-metabolism | |
MW, pI | 58,7 kDa, 5.39 |
Gene length, protein length | 1560 bp, 520 amino acids |
Immediate neighbours | pbpX, ymdB |
Get the DNA and protein sequences (Barbe et al., 2009) | |
Genetic context This image was kindly provided by SubtiList
|
Contents
The gene
Basic information
- Locus tag: BSU16960
Phenotypes of a mutant
essential PubMed
Database entries
- DBTBS entry: no entry
- SubtiList entry: [1]
Additional information
The protein
Basic information/ Evolution
- Catalyzed reaction/ biological activity:
- RNase Y cleaves S-box riboswitch RNAs in vivo and in vitro PubMed
- preference for 5' monophosphorylated substrate in vitro PubMed
- endonucleolytic cleavage PubMed
- required for the processing of the gapA operon mRNA PubMed
- cleavage activity appears sensitive to downstream secondary structure PubMed
- RNase Y initiates the degradation of rpsO mRNA PubMed
- Protein family: Member of the HD superfamily of metal-dependent phosphohydrolases; 2',3' cyclic nucleotide phosphodiesterase family (according to Swiss-Prot)
- Paralogous protein(s):
Extended information on the protein
- Kinetic information:
- Domains:
- transmembrane domain (4–24)
- KH domain (210–273)
- HD domain (336–429)
- Modification:
- Cofactor(s): requires Mg+2, which can be replaced by Zn+2 or Mn+2 ions, PubMed
- Effectors of protein activity: appears sensitive to downstream secondary structure, PubMed
- Localization: cell membrane, single-pass membrane protein PubMed
Database entries
- Structure:
- UniProt: O31774
- KEGG entry: [2]
- E.C. number: 3.1.4.16
Additional information
required for the processing of the gapA operon mRNA
Expression and regulation
- Sigma factor:
- Regulation: constitutive
- Regulatory mechanism:
- Additional information:
Biological materials
- Mutant: essential!!!!, 4043 (rny under p-spac control, cat), GP193 (rny under p-xyl control, cat), both available in Stülke lab; SSB447 (rny under P-spac control, "erm") available in Putzer lab.
- Expression vector:
- N-terminal Strep-tag, expression in E. coli, in pGP172: pGP441, available in Stülke lab
- N-terminal Strep-tag, for SPINE, expression in B. subtilis, in pGP380: pGP775 , available in Stülke lab
- Expression of RNase Y missing the N-terminal transmembrane domain (25aa) as an intein fusion in E. coli (no tag left in the purified protein) available in the Putzer lab
- wild type rny, expression in B. subtilis, in pBQ200: pGP1201, available in Stülke lab
- there is also a series of domain constructs present in pBQ200, all available in Stülke lab
- GFP fusion: B. subtilis 3569 (amyE:: (p-xyl rny-gfpmut1-spc)), available in Errington lab
- two-hybrid system: B. pertussis adenylate cyclase-based bacterial two hybrid system (BACTH), available in Stülke lab
Labs working on this gene/protein
Harald Putzer, IBPC Paris, France Homepage
Jörg Stülke, University of Göttingen, Germany Homepage
Your additional remarks
References