Sandbox

From SubtiWiki
Revision as of 13:56, 8 June 2009 by Sroppel (talk | contribs)
Jump to: navigation, search
  • Description: acetolactate decarboxylase

Gene name alsD
Synonyms
Essential no
Product acetolactate decarboxylase)
Function overflow metabolism
MW, pI 28 kDa, 4.603
Gene length, protein length 765 bp, 255 aa
Immediate neighbours ywrO, alsS
Get the DNA and protein sequences
(Barbe et al., 2009)
Genetic context
AlsD context.gif
This image was kindly provided by SubtiList



The gene

Basic information

  • Locus tag: BSU36000

Phenotypes of a mutant

Database entries

  • DBTBS entry: [1]
  • SubtiList entry: [2]

Additional information

The protein

Basic information/ Evolution

  • Catalyzed reaction/ biological activity: (2S)-2-hydroxy-2-methyl-3-oxobutanoate = (3R)-3-hydroxybutan-2-one + CO2 (according to Swiss-Prot)
  • Protein family: alpha-acetolactate decarboxylase family (according to Swiss-Prot)
  • Paralogous protein(s):

Extended information on the protein

  • Kinetic information:
  • Domains:
  • Modification: phosphorylated on ser/ thr/ tyr PubMed
  • Cofactor(s):
  • Effectors of protein activity:
  • Interactions:
  • Localization:

Database entries

  • Structure:
  • KEGG entry: [3]

Additional information

Expression and regulation

  • Regulation: induction by acetate (AlsR) PubMed, repressed as long as terminal electron acceptors are available for respiration (Rex) PubMed

Note: since acetate formation requires ackA activation by CcpA there is an indirect effect of CcpA on the alsSD operon: the operon is not expressed in ccpA mutants

  • Regulatory mechanism: AlsR: transcription activation in the presence of acetate PubMed, Rex: transcription repression if the ratio NADH2/NAD is high PubMed
  • Additional information:

Biological materials

  • Mutant:
  • Expression vector:
  • lacZ fusion:
  • GFP fusion:
  • two-hybrid system:
  • Antibody:

Labs working on this gene/protein

Your additional remarks

References

Alain Lévine, Françoise Vannier, Cédric Absalon, Lauriane Kuhn, Peter Jackson, Elaine Scrivener, Valérie Labas, Joëlle Vinh, Patrick Courtney, Jérôme Garin, Simone J Séror
Analysis of the dynamic Bacillus subtilis Ser/Thr/Tyr phosphoproteome implicated in a wide variety of cellular processes.
Proteomics: 2006, 6(7);2157-73
[PubMed:16493705] [WorldCat.org] [DOI] (P p)

Heike Reents, Richard Münch, Thorben Dammeyer, Dieter Jahn, Elisabeth Härtig
The Fnr regulon of Bacillus subtilis.
J Bacteriol: 2006, 188(3);1103-12
[PubMed:16428414] [WorldCat.org] [DOI] (P p)

M C Renna, N Najimudin, L R Winik, S A Zahler
Regulation of the Bacillus subtilis alsS, alsD, and alsR genes involved in post-exponential-phase production of acetoin.
J Bacteriol: 1993, 175(12);3863-75
[PubMed:7685336] [WorldCat.org] [DOI] (P p)

  1. Lévine et al. (2006) Analysis of the dynamic Bacillus subtilis Ser/Thr/Tyr phosphoproteome implicated in a wide variety of cellular processes. Proteomics 6: 2157-2173 PubMed
  2. Renna, M. C., Najimudin, N., Winik, L. R., and Zahler, S. A. (1993). Regulation of the Bacillus subtilis alsS, alsD, and alsR genes involved in post-exponential-phase production of acetoin. J. Bacteriol. 175, 3863-3875. PubMed
  3. Reents, H., R. Münch, T. Dammeyer, D. Jahn, and E. Härtig. 2006. The Fnr regulon of Bacillus subtilis. J. Bacteriol. 188: 1103-1112. PubMed
  4. Author1, Author2 & Author3 (year) Title Journal volume: page-page. PubMed