Eno

From SubtiWiki
Revision as of 22:08, 14 May 2009 by CLammers (talk | contribs) (Database entries)
Jump to: navigation, search
  • Description: enolase, glycolytic/ gluconeogenic enzyme

Gene name eno
Synonyms
Essential yes
Product enolase
Function enzyme in glycolysis/ gluconeogenesis
MW, pI 46,4 kDa, 4.49
Gene length, protein length 1290 bp, 430 amino acids
Immediate neighbours pgm, yvgK
Get the DNA and protein sequences
(Barbe et al., 2009)
Genetic context
Eno context.gif
This image was kindly provided by SubtiList




The gene

Basic information

  • Coordinates: 3475589 - 3476878

Phenotypes of a mutant

essential PubMed

Database entries

  • DBTBS entry: [1]
  • SubtiList entry: [2]

Additional information

The protein

Basic information/ Evolution

  • Catalyzed reaction/ biological activity: 2-phospho-D-glycerate = phosphoenolpyruvate + H(2)O
  • Protein family: enolase family
  • Paralogous protein(s):

Extended information on the protein

  • Kinetic information:
  • Domains:
    • substrate binding domain (366–369)
  • Modification: phosphorylation on Thr-141 AND Ser-259 AND Tyr-281 AND Ser-325 PubMed, PubMed, PubMed
  • Cofactor(s): magnesium ion
  • Effectors of protein activity:
  • Localization: cytoplasm (according to Swiss-Prot), cytoplasm PubMed and membrane associated PubMed

Database entries

  • Structure:

Additional information

Expression and regulation

  • Regulatory mechanism: transcription repression by CggR PubMed
  • Additional information:

Biological materials

  • Mutant:
  • Expression vector: pGP563 (N-terminal His-tag, in pWH844), pGP93 (N-terminal Strep-tag, purification from B. subtilis, for SPINE, in pGP380), available in Stülke lab
  • lacZ fusion:
  • GFP fusion: pHT315-yfp-eno, available in Mijakovic lab
  • two-hybrid system: B. pertussis adenylate cyclase-based bacterial two hybrid system (BACTH), available in Stülke lab
  • Antibody: available in Stülke lab

Labs working on this gene/protein

Jörg Stülke, University of Göttingen, Germany Homepage

Your additional remarks

References

  1. Blencke et al. (2003) Transcriptional profiling of gene expression in response to glucose in Bacillus subtilis: regulation of the central metabolic pathways. Metab Eng. 5: 133-149 PubMed
  2. Eymann et al. (2007) Dynamics of protein phosphorylation on Ser/Thr/Tyr in Bacillus subtilis. Proteomics 7: 3509-3526. PubMed
  3. Lévine et al. (2006) Analysis of the dynamic Bacillus subtilis Ser/Thr/Tyr phosphoproteome implicated in a wide variety of cellular processes. Proteomics 6: 2157-2173 PubMed
  4. Commichau, F. M., Rothe, F. M., Herzberg, C., Wagner, E., Hellwig, D., Lehnik-Habrink, M., Hammer, E., Völker, U. & Stülke, J. (2009) Novel activities of glycolytic enzymes in Bacillus subtilis: Interactions with essential proteins involved in mRNA processing. Mol. Cell. Proteomics in press PubMed
  5. Ludwig, H., Homuth, G., Schmalisch, M., Dyka, F. M., Hecker, M., and Stülke, J. (2001) Transcription of glycolytic genes and operons in Bacillus subtilis: evidence for the presence of multiple levels of control of the gapA operon. Mol Microbiol 41, 409-422.PubMed
  6. Jannière, L., Canceill, D., Suski, C., Kanga, S., Dalmais, B., Lestini, R., Monnier, A. F., Chapuis, J., Bolotin, A., Titok, M., Le Chatelier, E., and Ehrlich, S. D. (2007) Genetic evidence for a link between glycolysis and DNA replication. PLoS ONE 2, e447. PubMed
  7. Leyva-Vazquez, M. A., and Setlow, P. (1994) Cloning and nucleotide sequences of the genes encoding triose phosphate isomerase, phosphoglycerate mutase, and enolase from Bacillus subtilis. J Bacteriol 176: 3903-3910. PubMed
  8. Macek et al. (2007) The serine/ threonine/ tyrosine phosphoproteome of the model bacterium Bacillus subtilis. Mol. Cell. Proteomics 6: 697-707 PubMed