BglH

From SubtiWiki
Revision as of 14:17, 16 March 2009 by CLammers (talk | contribs)
Jump to: navigation, search
  • Description: phospho-beta-glucosidase

Gene name bglH
Synonyms
Essential no
Product phospho-beta-glucosidase)
Function salicin utilization
MW, pI 53 kDa, 4.957
Gene length, protein length 1407 bp, 469 aa
Immediate neighbours yxiE, bglP
Gene sequence (+200bp) Protein sequence
Genetic context
BglH context.gif



The gene

Basic information

  • Coordinates:

Phenotypes of a mutant

Database entries

  • DBTBS entry: [1]
  • SubtiList entry: [2]

Additional information

The protein

Basic information/ Evolution

  • Catalyzed reaction/ biological activity:
  • Protein family:
  • Paralogous protein(s):

Extended information on the protein

  • Kinetic information:
  • Domains:
  • Modification:
  • Cofactor(s):
  • Effectors of protein activity:
  • Interactions:
  • Localization:

Database entries

  • Structure:
  • Swiss prot entry:
  • KEGG entry:
  • E.C. number:

Additional information

Expression and regulation

  • Regulation: induced by salicin PubMed, repressed by glucose (catabolite repression)
  • Regulatory mechanism: Induction: LicT-dependent RNA switch (antitermination), catabolite repression: repression by CcpA (CcpA binding site overlaps -35 region) and lack of LicT-dependent antitermination in the presence of gucose due to the requirement of LicT to be phosphorylated by HPr
  • Additional information:

Biological materials

  • Mutant:
  • Expression vector:
  • lacZ fusion:
  • GFP fusion:
  • two-hybrid system:
  • Antibody:

Labs working on this gene/protein

Your additional remarks

References

  1. Le Coq, D., Lindner, C., Krüger, S., Steinmetz, M. & Stülke, J. (1995) New ß-glucosides (bgl) genes in Bacillus subtilis: The bglP gene product has both transport and regulatory functions, similar to that of the Escherichia coli BglF protein. J. Bacteriol. 177: 1527-1535. PubMed
  2. Krüger, S. and Hecker, M. (1995) Regulation of the putative bglPH operon for aryl-ß-glycoside utilization in Bacillus subtilis. J. Bacteriol. 177, 5590-5597. PubMed
  3. Author1, Author2 & Author3 (year) Title Journal volume: page-page. PubMed