ResD

From SubtiWiki
Revision as of 14:13, 17 April 2014 by 134.76.70.252 (talk)
Jump to: navigation, search
  • Description: two-component response regulator, regulation of aerobic and anaerobic respiration

Gene name resD
Synonyms ypxD
Essential no
Product two-component response regulator
Function regulation of aerobic and anaerobic respiration
respiration
Gene expression levels in SubtiExpress: resD
Interactions involving this protein in SubtInteract: ResD
Metabolic function and regulation of this protein in SubtiPathways:
resD
MW, pI 27 kDa, 5.631
Gene length, protein length 720 bp, 240 aa
Immediate neighbours resE, resC
Sequences Protein DNA DNA_with_flanks
Genetic context
ResD context.gif
This image was kindly provided by SubtiList
Expression at a glance   PubMed
ResD expression.png
















Categories containing this gene/protein

regulators of electron transport, transcription factors and their control, membrane proteins, phosphoproteins

This gene is a member of the following regulons

CcpA regulon, PhoP regulon, ResD regulon

The ResD regulon

The gene

Basic information

  • Locus tag: BSU23120

Phenotypes of a mutant

Database entries

  • DBTBS entry: [1]
  • SubtiList entry: [2]

Additional information

The protein

Basic information/ Evolution

  • Catalyzed reaction/ biological activity:
  • Protein family: OmpR family of two-component response regulators
  • Paralogous protein(s):

Extended information on the protein

  • Kinetic information:
  • Domains:
  • Modification: phosphorylated by ResE on an Asp residue
  • Cofactor(s):
  • Effectors of protein activity: phosphorylation likely affects DNA-binding activity

Database entries

  • Structure:
  • KEGG entry: [3]
  • E.C. number:

Additional information

Expression and regulation

  • Regulation:
    • expressed under anaerobic conditions (ResD) PubMed
    • expressed under conditions of phosphate limitation (PhoP) PubMed
    • repressed by glucose (CcpA) PubMed
  • Additional information:
    • number of protein molecules per cell (minimal medium with glucose and ammonium): 306 PubMed
    • number of protein molecules per cell (complex medium with amino acids, without glucose): 3258 PubMed
    • number of protein molecules per cell (minimal medium with glucose and ammonium, exponential phase): 909 PubMed
    • number of protein molecules per cell (minimal medium with glucose and ammonium, early stationary phase after glucose exhaustion): 838 PubMed
    • number of protein molecules per cell (minimal medium with glucose and ammonium, late stationary phase after glucose exhaustion): 969 PubMed

Biological materials

  • Mutant:
  • Expression vector:
  • lacZ fusion:
  • GFP fusion:
  • two-hybrid system:
  • Antibody:

Labs working on this gene/protein

Marion Hulett, University of Illinois at Chicago, USA Homepage

Your additional remarks

References

Reviews

Elisabeth Härtig, Dieter Jahn
Regulation of the anaerobic metabolism in Bacillus subtilis.
Adv Microb Physiol: 2012, 61;195-216
[PubMed:23046954] [WorldCat.org] [DOI] (I p)

Original publications

Sushma Kommineni, Amrita Lama, Benjamin Popescu, Michiko M Nakano
Global transcriptional control by NsrR in Bacillus subtilis.
J Bacteriol: 2012, 194(7);1679-88
[PubMed:22287527] [WorldCat.org] [DOI] (I p)

Olivier Delumeau, François Lecointe, Jan Muntel, Alain Guillot, Eric Guédon, Véronique Monnet, Michael Hecker, Dörte Becher, Patrice Polard, Philippe Noirot
The dynamic protein partnership of RNA polymerase in Bacillus subtilis.
Proteomics: 2011, 11(15);2992-3001
[PubMed:21710567] [WorldCat.org] [DOI] (I p)

Sushma Kommineni, Erik Yukl, Takahiro Hayashi, Jacob Delepine, Hao Geng, Pierre Moënne-Loccoz, Michiko M Nakano
Nitric oxide-sensitive and -insensitive interaction of Bacillus subtilis NsrR with a ResDE-controlled promoter.
Mol Microbiol: 2010, 78(5);1280-93
[PubMed:21091510] [WorldCat.org] [DOI] (I p)

Ankita Puri-Taneja, Matthew Schau, Yinghua Chen, F Marion Hulett
Regulators of the Bacillus subtilis cydABCD operon: identification of a negative regulator, CcpA, and a positive regulator, ResD.
J Bacteriol: 2007, 189(9);3348-58
[PubMed:17322317] [WorldCat.org] [DOI] (P p)

Michiko M Nakano, Hao Geng, Shunji Nakano, Kazuo Kobayashi
The nitric oxide-responsive regulator NsrR controls ResDE-dependent gene expression.
J Bacteriol: 2006, 188(16);5878-87
[PubMed:16885456] [WorldCat.org] [DOI] (P p)

Elisabeth Härtig, Anja Hartmann, Manuela Schätzle, Alessandra M Albertini, Dieter Jahn
The Bacillus subtilis nrdEF genes, encoding a class Ib ribonucleotide reductase, are essential for aerobic and anaerobic growth.
Appl Environ Microbiol: 2006, 72(8);5260-5
[PubMed:16885274] [WorldCat.org] [DOI] (P p)

Soo-Keun Choi, Milton H Saier
Mechanism of CcpA-mediated glucose repression of the resABCDE operon of Bacillus subtilis.
J Mol Microbiol Biotechnol: 2006, 11(1-2);104-10
[PubMed:16825793] [WorldCat.org] [DOI] (P p)

Matthew Schau, Amr Eldakak, F Marion Hulett
Terminal oxidases are essential to bypass the requirement for ResD for full Pho induction in Bacillus subtilis.
J Bacteriol: 2004, 186(24);8424-32
[PubMed:15576792] [WorldCat.org] [DOI] (P p)

S Paul, X Zhang, F M Hulett
Two ResD-controlled promoters regulate ctaA expression in Bacillus subtilis.
J Bacteriol: 2001, 183(10);3237-46
[PubMed:11325953] [WorldCat.org] [DOI] (P p)

M M Nakano, Y Zhu
Involvement of ResE phosphatase activity in down-regulation of ResD-controlled genes in Bacillus subtilis during aerobic growth.
J Bacteriol: 2001, 183(6);1938-44
[PubMed:11222591] [WorldCat.org] [DOI] (P p)

X Zhang, F M Hulett
ResD signal transduction regulator of aerobic respiration in Bacillus subtilis: ctaA promoter regulation.
Mol Microbiol: 2000, 37(5);1208-19
[PubMed:10972837] [WorldCat.org] [DOI] (P p)

M M Nakano, Y Zhu, M Lacelle, X Zhang, F M Hulett
Interaction of ResD with regulatory regions of anaerobically induced genes in Bacillus subtilis.
Mol Microbiol: 2000, 37(5);1198-207
[PubMed:10972836] [WorldCat.org] [DOI] (P p)

C Fabret, V A Feher, J A Hoch
Two-component signal transduction in Bacillus subtilis: how one organism sees its world.
J Bacteriol: 1999, 181(7);1975-83
[PubMed:10094672] [WorldCat.org] [DOI] (P p)

S M Birkey, W Liu, X Zhang, M F Duggan, F M Hulett
Pho signal transduction network reveals direct transcriptional regulation of one two-component system by another two-component regulator: Bacillus subtilis PhoP directly regulates production of ResD.
Mol Microbiol: 1998, 30(5);943-53
[PubMed:9988472] [WorldCat.org] [DOI] (P p)

M M Nakano, Y P Dailly, P Zuber, D P Clark
Characterization of anaerobic fermentative growth of Bacillus subtilis: identification of fermentation end products and genes required for growth.
J Bacteriol: 1997, 179(21);6749-55
[PubMed:9352926] [WorldCat.org] [DOI] (P p)

M M Nakano, P Zuber, P Glaser, A Danchin, F M Hulett
Two-component regulatory proteins ResD-ResE are required for transcriptional activation of fnr upon oxygen limitation in Bacillus subtilis.
J Bacteriol: 1996, 178(13);3796-802
[PubMed:8682783] [WorldCat.org] [DOI] (P p)

G Sun, E Sharkova, R Chesnut, S Birkey, M F Duggan, A Sorokin, P Pujic, S D Ehrlich, F M Hulett
Regulators of aerobic and anaerobic respiration in Bacillus subtilis.
J Bacteriol: 1996, 178(5);1374-85
[PubMed:8631715] [WorldCat.org] [DOI] (P p)