Papers of the month
2011
- August 2011
- Chi et al. demonstrate that S-bacillithiolation of the repressor OhrR and of four enzymes of the methionine biosynthesis pathway protects the B. subtilis cell against hypochlorite stress.
- Relevant SubtiWiki pages: Haike Antelmann, Dörte Becher, Ulrike Mäder, resistance against oxidative and electrophile stress, Spx regulon, CtsR regulon, PerR regulon, OhrR, MetE, YxjG, PpaC, SerA, YphP
- July 2011
- Domínguez-Escobar et al. from Rut Carballido-Lopez' lab and Garner et al. report that movement of actin-like filaments is driven by the peptidoglycan elongation machinery. Both papers suggest that the MreB-like filaments serve to restrict the mobility of the peptidoglycan synthesizing machinery
- Relevant SubtiWiki pages: Rut Carballido-Lopez, David Rudner, MreB, MreBH, Mbl, MreC, MreD, PbpA, RodA, RodZ, penicillin-binding proteins, cell shape, cell wall synthesis, cell wall biosynthetic complex
- Domínguez-Escobar et al. from Rut Carballido-Lopez' lab and Garner et al. report that movement of actin-like filaments is driven by the peptidoglycan elongation machinery. Both papers suggest that the MreB-like filaments serve to restrict the mobility of the peptidoglycan synthesizing machinery
- A comment on these papers:
- June 2011
- Oppenheimer-Shaanan et al. from Sigal Ben-Yehuda's lab report that cyclic di-AMP acts as a secondary messenger that couples DNA integrity with progression of sporulation
- Relevant SubtiWiki pages: Sigal Ben-Yehuda, DisA, YybT, metabolism of signalling nucleotides, cell division
- Oppenheimer-Shaanan et al. from Sigal Ben-Yehuda's lab report that cyclic di-AMP acts as a secondary messenger that couples DNA integrity with progression of sporulation
- May 2011
- Miles et al. identified the enzyme for the key final step in the biosynthesis of queuosine, a hypermodified base found in the wobble positions of tRNA Asp, Asn, His, and Tyr from bacteria to man
- Relevant SubtiWiki pages: QueG, translation
- Miles et al. identified the enzyme for the key final step in the biosynthesis of queuosine, a hypermodified base found in the wobble positions of tRNA Asp, Asn, His, and Tyr from bacteria to man
Zachary D Miles, Reid M McCarty, Gabriella Molnar, Vahe Bandarian
Discovery of epoxyqueuosine (oQ) reductase reveals parallels between halorespiration and tRNA modification.
Proc Natl Acad Sci U S A: 2011, 108(18);7368-72
[PubMed:21502530]
[WorldCat.org]
[DOI]
(I p)