LeuD

From SubtiWiki
Revision as of 11:41, 31 March 2009 by Sroppel (talk | contribs)
Jump to: navigation, search
  • Description: 3-isopropylmalate dehydratase (small subunit)

Gene name leuD
Synonyms
Essential no
Product 3-isopropylmalate dehydratase (small subunit)
Function biosynthesis of leucine
MW, pI 22 kDa, 4.582
Gene length, protein length 597 bp, 199 aa
Immediate neighbours ysoA, leuC
Gene sequence (+200bp) Protein sequence
Genetic context
LeuD context.gif
This image was kindly provided by SubtiList



The gene

Basic information

  • Coordinates:

Phenotypes of a mutant

Database entries

  • DBTBS entry: [1]
  • SubtiList entry: [2]

Additional information

The protein

Basic information/ Evolution

  • Catalyzed reaction/ biological activity:
  • Protein family:
  • Paralogous protein(s):

Extended information on the protein

  • Kinetic information:
  • Domains:
  • Modification:
  • Cofactor(s):
  • Effectors of protein activity:
  • Interactions:
  • Localization:

Database entries

  • Structure:
  • Swiss prot entry:
  • KEGG entry: [3]
  • E.C. number:

Additional information

  • subject to Clp-dependent proteolysis upon glucose starvation PubMed

Expression and regulation

  • Regulation: repressed by Casamino Acids PubMed , expressed in the absence of branched-chain amino acids (BCAA), expression is stimulated in the presence of glucose PubMed
  • Regulatory mechanism: glucose regulation: CcpA PubMed, repression by BCAA: tRNA-controlled RNA switch (T-box) that mediates termination/antitermination, transcription repression by CodY
  • Additional information: subject to Clp-dependent proteolysis upon glucose starvation PubMed

Biological materials

  • Mutant:
  • Expression vector:
  • lacZ fusion:
  • GFP fusion:
  • two-hybrid system:
  • Antibody:

Labs working on this gene/protein

Your additional remarks

References

  1. Mäder et al. (2002) Transcriptome and Proteome Analysis of Bacillus subtilis Gene Expression Modulated by Amino Acid Availability. J. Bacteriol 184: 1844288-4295 PubMed
  2. Gerth et al. (2008) Clp-dependent proteolysis down-regulates central metabolic pathways in glucose-starved Bacillus subtilis. J Bacteriol 190:321-331 PubMed
  3. Author1, Author2 & Author3 (year) Title Journal volume: page-page. PubMed