GapB

From SubtiWiki
Revision as of 10:58, 14 May 2013 by 134.76.70.252 (talk)
Jump to: navigation, search
  • Description: glyceraldehyde-3-phosphate dehydrogenase, NADP-dependent, gluconeogenic enzyme, forms a transhydrogenation cycle with GapA for balancing of NADPH

Gene name gapB
Synonyms ppc
Essential no
Product glyceraldehyde-3-phosphate dehydrogenase 2
Function anabolic enzyme in gluconeogenesis
Gene expression levels in SubtiExpress: gapB
Metabolic function and regulation of this protein in SubtiPathways:
Cys, Met & Sulfate assimilation, Central C-metabolism
MW, pI 37,3 kDa, 6.47
Gene length, protein length 1020 bp, 340 amino acids
Immediate neighbours speD, ytcD
Sequences Protein DNA DNA_with_flanks
Genetic context
GapB context.gif
This image was kindly provided by SubtiList
Expression at a glance   PubMed
GapB expression.png



















Categories containing this gene/protein

carbon core metabolism

This gene is a member of the following regulons

CcpN regulon

The gene

Basic information

  • Locus tag: BSU29020

Phenotypes of a mutant

Database entries

  • DBTBS entry: [1]
  • SubtiList entry: [2]

Additional information

The protein

Basic information/ Evolution

  • Catalyzed reaction/ biological activity: D-glyceraldehyde 3-phosphate + phosphate + NAD(P)+ = 3-phospho-D-glyceroyl phosphate + NAD(P)H (according to Swiss-Prot)
    • This reaction is part of the gluconeogenesis
  • Protein family: glyceraldehyde-3-phosphate dehydrogenase family (according to Swiss-Prot)
  • Paralogous protein(s): GapA

Extended information on the protein

  • Kinetic information: Michaelis-Menten PubMed
  • Domains:
    • Nucleotid bindinge domain (12-13)
    • 2x Glyceraldehyde 3-phosphate binding domain (151-153) & (210-211)
  • Modification:
  • Cofactor(s): NADP (preferentially) and NAD PubMed
  • Effectors of protein activity:

Database entries

  • Structure: 3PRL (from B. halodurans)
  • KEGG entry: [3]

Additional information

Expression and regulation

  • Regulation:
    • repressed in the presence of glucose (70-fold) (CcpN) PubMed
    • strongly induced in response to glucose starvation in M9 medium PubMed
  • Regulatory mechanism:
  • Additional information:

Biological materials

  • Mutant:
    • GP701 (gapB::spec), available in Stülke lab
    • 1A1004 ( gapB::erm), PubMed, available at BGSC
  • Expression vector:
  • lacZ fusion:
  • GFP fusion:
  • Antibody:

Labs working on this gene/protein

Stephane Aymerich, Microbiology and Molecular Genetics, INRA Paris-Grignon, France

Your additional remarks

References

Additional publications: PubMed