CcpA

From SubtiWiki
Revision as of 18:03, 9 January 2009 by Jstuelk (talk | contribs) (Phenotypes of a mutant)
Jump to: navigation, search
  • Description: Carbon catabolite control protein A, involved in glucose regulation of many genes; represses catabolic genes and activates genes involved in excretion of excess carbon

Gene name ccpA
Synonyms graR, alsA, amyR
Essential no
Product transcriptional regulator
Function mediates carbon catabolite repression (CCR)
MW, pI 36,8 kDa, 5.06
Gene length, protein length 1002 bp, 334 amino acids
Immediate neighbours aroA, motP
Gene sequence (+200bp) Protein sequence
Genetic context
File:GenE context.gif












The gene

Basic information

  • Coordinates:

Phenotypes of a mutant

Loss of carbon catabolite repression. Loss of PTS-dependent sugar transport due to excessive phosphorylation of PtsH by HPrK. The mutant is unable to grow on a minimal medium with glucose and ammonium as the only sources of carbon and nitrogen, respectively.

Database entries

  • DBTBS entry: [1]
  • SubtiList entry: [2]

Additional information

The protein

Basic information/ Evolution

  • Catalyzed reaction/ biological activity: transcriptional regulator of carbon catabolite repression (CCR)
  • Protein family: LacI family
  • Paralogous protein(s):

Extended information on the protein

  • Kinetic information:
  • Domains:
    • HTH lacI-type Domain (1 – 58)
    • DNA binding Domain (6 – 25)
  • Modification:
  • Cofactor(s): HPr-Ser46-P, Crh-Ser-46-P
  • Effectors of protein activity:glucose-6-phosphate, fructose-1,6-bisphosphate Pubmed
  • Localization:

Database entries

  • Structure: CcpA-Crh-DNA-complex NCBI, complex with P-Ser-HPr and sulphate ions NCBI
  • Swiss prot entry: [3]
  • KEGG entry: [4]
  • E.C. number:

Additional information

Expression and regulation

  • Sigma factor:
  • Regulation:
  • Regulatory mechanism:
  • Additional information:

Biological materials

Labs working on this gene/protein

Wolfgang Hillen, Erlangen University, Germany Homepage

Richard Brennan, Houston, Texas, USA Homepage

Milton H. Saier, University of California at San Diego, USA Homepage

Yasutaro Fujita, University of Fukuyama, Japan

Jörg Stülke, University of Göttingen, Germany Homepage

Your additional remarks

References

  1. Author1, Author2 & Author3 (year) Title Journal volume: page-page. PubMed
  2. Terahara et al. (2006) An intergenic stem-loop mutation in the Bacillus subtilis ccpA-motPS operon increases motPS transcription and the MotPS contribution to motility J Bacteriol. 188(7): 2701-5. PubMed