GapB
- Description: glyceraldehyde-3-phosphate dehydrogenase, NADP-dependent, gluconeogenic enzyme
Gene name | gapB |
Synonyms | ppc |
Essential | no |
Product | glyceraldehyde-3-phosphate dehydrogenase 2 |
Function | anabolic enzyme in gluconeogenesis |
MW, pI | 37,3 kDa, 6.47 |
Gene length, protein length | 1020 bp, 340 amino acids |
Immediate neighbours | ytcD, speD |
Get the DNA and protein sequences (Barbe et al., 2009) | |
Genetic context This image was kindly provided by SubtiList
|
Contents
The gene
Basic information
- Coordinates: 2966075 - 2967094
Phenotypes of a mutant
Database entries
- DBTBS entry: [1]
- SubtiList entry: [2]
Additional information
The protein
Basic information/ Evolution
- Catalyzed reaction/ biological activity: D-glyceraldehyde 3-phosphate + phosphate + NAD(P)(+) = 3-phospho-D-glyceroyl phosphate + NAD(P)H.
- Protein family: glyceraldehyde-3-phosphate dehydrogenase family
- Paralogous protein(s): GapA
Extended information on the protein
- Kinetic information:
- Domains:
- Nucleotid bindinge domain (12-13)
- 2x Glyceraldehyde 3-phosphate binding domain (151-153) & (210-211)
- Modification:
- Cofactor(s):
- Effectors of protein activity:
- Interactions:
- Localization: Cytoplasm (Homogeneous) PubMed
Database entries
- Structure:
- Swiss prot entry: O34425
- KEGG entry: [3]
- E.C. number: 1.2.1.12
Additional information
Expression and regulation
- Regulatory mechanism: transcription repression
- Additional information:
Biological materials
- Mutant:
- Expression vector:
- lacZ fusion:
- GFP fusion:
- Antibody:
Labs working on this gene/protein
Stephane Aymerich, Microbiology and Molecular Genetics, INRA Paris-Grignon, France
Your additional remarks
References
- Fillinger, S., Boschi-Muller, S., Azza, S., Dervyn, E., Branlant, G., and Aymerich, S. (2000) Two glyceraldehyde-3-phosphate dehydrogenases with opposite physiological roles in a nonphotosynthetic bacterium. J Biol Chem 275, 14031-14037. PubMed
- Meile et al. (2006) Systematic localisation of proteins fused to the green fluorescent protein in Bacillus subtilis: identification of new proteins at the DNA replication factory Proteomics 6: 2135-2146. PubMed
- Servant et al. (2005) CcpN (YqzB), a novel regulator for CcpA-independent catabolite repression of Bacillus subtilis gluconeogenic genes. Mol. Microbiol. 55: 1435-1451. PubMed
- Tännler et al. (2008) CcpN controls central carbon fluxes in Bacillus subtilis. J. Bacteriol. 190: 6178-6187. PubMed
- Thomaides, H. B., Davison, E. J., Burston, L., Johnson, H., Brown, D. R., Hunt, A. C., Errington, J., and Czaplewski, L. (2007) Essential bacterial functions encoded by gene pairs. J Bacteriol 189: 591-602. PubMed