Difference between revisions of "FbaA"
Cadu Cunha (talk | contribs) (→Basic information/ Evolution) |
Cadu Cunha (talk | contribs) (→Database entries) |
||
Line 86: | Line 86: | ||
* '''KEGG entry:''' [http://www.genome.jp/dbget-bin/www_bget?bsu+BSU37120] | * '''KEGG entry:''' [http://www.genome.jp/dbget-bin/www_bget?bsu+BSU37120] | ||
− | * '''E.C. number:''' [http://www.expasy.org/enzyme/4.1.2.13 | + | * '''E.C. number:''' [http://www.expasy.org/enzyme/4.1.2.13 4.1.2.13] |
=== Additional information=== | === Additional information=== |
Revision as of 11:08, 11 June 2009
- Description: fructose 1,6-bisphosphate aldolase, glycolytic/ gluconeogenic enzyme
Gene name | fbaA |
Synonyms | fba, fba1, tsr |
Essential | yes |
Product | fructose-1,6-bisphosphate aldolase |
Function | enzyme in glycolysis/ gluconeogenesis |
MW, pI | 30,2 kDa, 5.03 |
Gene length, protein length | 855 bp, 285 amino acids |
Immediate neighbours | spo0F, ywjH |
Get the DNA and protein sequences (Barbe et al., 2009) | |
Genetic context This image was kindly provided by SubtiList
|
Contents
The gene
Basic information
- Locus tag: BSU37120
Phenotypes of a mutant
- Essential PubMed
Database entries
- DBTBS entry: [1]
- SubtiList entry: [2]
Additional information
The protein
Basic information/ Evolution
- Catalyzed reaction/ biological activity: D-fructose 1,6-bisphosphate = glycerone phosphate + D-glyceraldehyde 3-phosphate (according to Swiss-Prot)
- Protein family: class II fructose-bisphosphate aldolase family (according to Swiss-Prot)
- Paralogous protein(s): FbaB
Extended information on the protein
- Kinetic information: Reversible Michaelis-Menten PubMed
- Domains:
- 2 x Dihydroxyacetone phosphate binding domain (210–212), (231–234)
- Modification: phosphorylation on Thr-212 and Thr-234 PubMed
- Cofactor(s): Zn2+ (Metalloenzyme)
- Effectors of protein activity:
- Interactions:
- Localization:
Database entries
- Structure:
- Swiss prot entry: P13243
- KEGG entry: [3]
- E.C. number: 4.1.2.13
Additional information
Binds 2 zinc ions per subunit. One is catalytic and the other provides a structural contribution
Expression and regulation
- Sigma factor:
- Regulation: constitutively expressed PubMed
- Regulatory mechanism:
- Additional information:
Biological materials
- Mutant:
- Expression vector: pGP395 (N-terminal His-tag, in pWH844), pGP88 (N-terminal Strep-tag, for SPINE, expression in B. subtilis, in pGP380)
- lacZ fusion: pGP601 (in pAC6)
- GFP fusion:
- two-hybrid system: B. pertussis adenylate cyclase-based bacterial two hybrid system (BACTH), available in Stülke lab
- Antibody:
Labs working on this gene/protein
Your additional remarks
References
Boris Macek, Ivan Mijakovic, Jesper V Olsen, Florian Gnad, Chanchal Kumar, Peter R Jensen, Matthias Mann
The serine/threonine/tyrosine phosphoproteome of the model bacterium Bacillus subtilis.
Mol Cell Proteomics: 2007, 6(4);697-707
[PubMed:17218307]
[WorldCat.org]
[DOI]
(P p)
Matthieu Fonvielle, Philippe Weber, Kasia Dabkowska, Michel Therisod
New highly selective inhibitors of class II fructose-1,6-bisphosphate aldolases.
Bioorg Med Chem Lett: 2004, 14(11);2923-6
[PubMed:15125960]
[WorldCat.org]
[DOI]
(P p)
S Ujita
Fructose 1,6-bisphosphate aldolases from spores and vegetative cells of Bacillus subtilis PCI 219.
J Biochem: 1978, 83(2);493-502
[PubMed:24624]
[WorldCat.org]
[DOI]
(P p)
- Trach K, Chapman JW & Piggot P (1988) Complete sequence and transcriptional analysis of the spo0F region of the Bacillus subtilis chromosome J Bacteriol. 170: 4194-4208. PubMed
- Ludwig H, Homuth G & Schmalisch M (2001) Transcription of glycolytic genes and operons in Bacillus subtilis: evidence for the presence of multiple levels of control of the gapA operon Mol Microbiol. 41: 409-422. PubMed
- Macek et al. (2007) The serine/ threonine/ tyrosine phosphoproteome of the model bacterium Bacillus subtilis. Mol. Cell. Proteomics 6: 697-707 PubMed