Difference between revisions of "AlsD"
Line 95: | Line 95: | ||
* '''Regulation:''' induction by acetate ([[AlsR]]) [http://www.ncbi.nlm.nih.gov/sites/entrez/7685336 PubMed], repressed as long as terminal electron acceptors are available for respiration ([[Rex]]) [http://www.ncbi.nlm.nih.gov/sites/entrez/16428414 PubMed] | * '''Regulation:''' induction by acetate ([[AlsR]]) [http://www.ncbi.nlm.nih.gov/sites/entrez/7685336 PubMed], repressed as long as terminal electron acceptors are available for respiration ([[Rex]]) [http://www.ncbi.nlm.nih.gov/sites/entrez/16428414 PubMed] | ||
+ | ** repressed at regular oxygen concentration ([[Rex]]) [http://www.ncbi.nlm.nih.gov/sites/entrez/16428414 PubMed] | ||
Note: since acetate formation requires ''[[ackA]]'' activation by [[CcpA]] there is an indirect effect of [[CcpA]] on the ''alsSD'' operon: the operon is not expressed in ''[[ccpA]]'' mutants | Note: since acetate formation requires ''[[ackA]]'' activation by [[CcpA]] there is an indirect effect of [[CcpA]] on the ''alsSD'' operon: the operon is not expressed in ''[[ccpA]]'' mutants | ||
* '''Regulatory mechanism:''' [[AlsR]]: transcription activation in the presence of acetate [http://www.ncbi.nlm.nih.gov/sites/entrez/7685336 PubMed], [[Rex]]: transcription repression if the ratio NADH2/NAD is high [http://www.ncbi.nlm.nih.gov/sites/entrez/16428414 PubMed] | * '''Regulatory mechanism:''' [[AlsR]]: transcription activation in the presence of acetate [http://www.ncbi.nlm.nih.gov/sites/entrez/7685336 PubMed], [[Rex]]: transcription repression if the ratio NADH2/NAD is high [http://www.ncbi.nlm.nih.gov/sites/entrez/16428414 PubMed] | ||
+ | ** [[Rex]]: transcription activation [http://www.ncbi.nlm.nih.gov/sites/entrez/16428414 PubMed] | ||
* '''Additional information:''' | * '''Additional information:''' |
Revision as of 17:15, 11 June 2009
- Description: acetolactate decarboxylase
Gene name | alsD |
Synonyms | |
Essential | no |
Product | acetolactate decarboxylase) |
Function | overflow metabolism |
Metabolic function and regulation of this protein in SubtiPathways: Central C-metabolism | |
MW, pI | 28 kDa, 4.603 |
Gene length, protein length | 765 bp, 255 aa |
Immediate neighbours | ywrO, alsS |
Get the DNA and protein sequences (Barbe et al., 2009) | |
Genetic context This image was kindly provided by SubtiList
|
Contents
The gene
Basic information
- Locus tag: BSU36000
Phenotypes of a mutant
Database entries
- DBTBS entry: [1]
- SubtiList entry: [2]
Additional information
The protein
Basic information/ Evolution
- Catalyzed reaction/ biological activity: (2S)-2-hydroxy-2-methyl-3-oxobutanoate = (3R)-3-hydroxybutan-2-one + CO2 (according to Swiss-Prot)
- Protein family: alpha-acetolactate decarboxylase family (according to Swiss-Prot)
- Paralogous protein(s):
Extended information on the protein
- Kinetic information:
- Domains:
- Modification: phosphorylated on ser/ thr/ tyr PubMed
- Cofactor(s):
- Effectors of protein activity:
- Interactions:
- Localization:
Database entries
- Structure:
- Swiss prot entry: Q04777
- KEGG entry: [3]
- E.C. number: 4.1.1.5
Additional information
Expression and regulation
- Regulation: induction by acetate (AlsR) PubMed, repressed as long as terminal electron acceptors are available for respiration (Rex) PubMed
Note: since acetate formation requires ackA activation by CcpA there is an indirect effect of CcpA on the alsSD operon: the operon is not expressed in ccpA mutants
- Regulatory mechanism: AlsR: transcription activation in the presence of acetate PubMed, Rex: transcription repression if the ratio NADH2/NAD is high PubMed
- Additional information:
Biological materials
- Mutant:
- Expression vector:
- lacZ fusion:
- GFP fusion:
- two-hybrid system:
- Antibody:
Labs working on this gene/protein
Your additional remarks
References
- Lévine et al. (2006) Analysis of the dynamic Bacillus subtilis Ser/Thr/Tyr phosphoproteome implicated in a wide variety of cellular processes. Proteomics 6: 2157-2173 PubMed
- Renna, M. C., Najimudin, N., Winik, L. R., and Zahler, S. A. (1993). Regulation of the Bacillus subtilis alsS, alsD, and alsR genes involved in post-exponential-phase production of acetoin. J. Bacteriol. 175, 3863-3875. PubMed
- Reents, H., R. Münch, T. Dammeyer, D. Jahn, and E. Härtig. 2006. The Fnr regulon of Bacillus subtilis. J. Bacteriol. 188: 1103-1112. PubMed
- Author1, Author2 & Author3 (year) Title Journal volume: page-page. PubMed