Difference between revisions of "Tpi"
Cadu Cunha (talk | contribs) (→Phenotypes of a mutant) |
|||
Line 40: | Line 40: | ||
===Phenotypes of a mutant === | ===Phenotypes of a mutant === | ||
− | + | * Essential [http://www.ncbi.nlm.nih.gov/pubmed/12682299 PubMed] | |
=== Database entries === | === Database entries === |
Revision as of 11:52, 10 June 2009
- Description: triose phosphate isomerase, glycolytic/ gluconeogenic enzyme
Gene name | tpi |
Synonyms | tpiA |
Essential | yes |
Product | triosephosphate isomerase |
Function | enzyme in glycolysis/ gluconeogenesis |
MW, pI | 26,9 kDa, 4.79 |
Gene length, protein length | 759 bp, 253 amino acids |
Immediate neighbours | pgk, pgm |
Get the DNA and protein sequences (Barbe et al., 2009) | |
Genetic context This image was kindly provided by SubtiList
|
Contents
The gene
Basic information
- Locus tag: BSU33920
Phenotypes of a mutant
- Essential PubMed
Database entries
- DBTBS entry: [1]
- SubtiList entry: [2]
Additional information
The protein
Basic information/ Evolution
- Catalyzed reaction/ biological activity: D-glyceraldehyde 3-phosphate = glycerone phosphate (according to Swiss-Prot) D-glyceraldehyde 3-phosphate = dihydroxyacetone phosphate
- Protein family: triosephosphate isomerase family (according to Swiss-Prot) triosephosphate isomerase family
- Paralogous protein(s):
Extended information on the protein
- Kinetic information:
- Domains:
- Modification: phosphorylation on Ser-213 PubMed
- Cofactor(s):
- Effectors of protein activity: inhibited by 2-phosphoglycolate (in B. stearothermophilus) PubMed
- Interactions:
- Localization: cytoplasm (according to Swiss-Prot), cytoplasm PubMed
Database entries
- Structure: 1BTM (complex with 2-phosphoglycolic acid, Geobacillus stearothermophilus), complex with 2-phosphpoglycolic acid, Geobacillus stearothermophilus NCBI
- Swiss prot entry: P27876
- KEGG entry: [3]
- E.C. number: 5.3.1.1 5.3.1.1]
Additional information
Expression and regulation
- Sigma factor: SigA
- Regulation: expression activated by glucose (2.8 fold) PubMed
- Additional information:
Biological materials
- Mutant:
- Expression vector: pGP394 (N-terminal His-tag, in pWH844), pGP89 (N-terminal Strep-tag, for SPINE, expression in B. subtilis), available in Stülke lab
- lacZ fusion:
- GFP fusion:
- two-hybrid system: B. pertussis adenylate cyclase-based bacterial two hybrid system (BACTH), available in Stülke lab
- Antibody:
Labs working on this gene/protein
Your additional remarks
References
Laurent Jannière, Danielle Canceill, Catherine Suski, Sophie Kanga, Bérengère Dalmais, Roxane Lestini, Anne-Françoise Monnier, Jérôme Chapuis, Alexander Bolotin, Marina Titok, Emmanuelle Le Chatelier, S Dusko Ehrlich
Genetic evidence for a link between glycolysis and DNA replication.
PLoS One: 2007, 2(5);e447
[PubMed:17505547]
[WorldCat.org]
[DOI]
(I e)
Boris Macek, Ivan Mijakovic, Jesper V Olsen, Florian Gnad, Chanchal Kumar, Peter R Jensen, Matthias Mann
The serine/threonine/tyrosine phosphoproteome of the model bacterium Bacillus subtilis.
Mol Cell Proteomics: 2007, 6(4);697-707
[PubMed:17218307]
[WorldCat.org]
[DOI]
(P p)
Hans-Matti Blencke, Georg Homuth, Holger Ludwig, Ulrike Mäder, Michael Hecker, Jörg Stülke
Transcriptional profiling of gene expression in response to glucose in Bacillus subtilis: regulation of the central metabolic pathways.
Metab Eng: 2003, 5(2);133-49
[PubMed:12850135]
[WorldCat.org]
[DOI]
(P p)
H Ludwig, G Homuth, M Schmalisch, F M Dyka, M Hecker, J Stülke
Transcription of glycolytic genes and operons in Bacillus subtilis: evidence for the presence of multiple levels of control of the gapA operon.
Mol Microbiol: 2001, 41(2);409-22
[PubMed:11489127]
[WorldCat.org]
[DOI]
(P p)
M A Leyva-Vazquez, P Setlow
Cloning and nucleotide sequences of the genes encoding triose phosphate isomerase, phosphoglycerate mutase, and enolase from Bacillus subtilis.
J Bacteriol: 1994, 176(13);3903-10
[PubMed:8021172]
[WorldCat.org]
[DOI]
(P p)
- Blencke et al. (2003) Transcriptional profiling of gene expression in response to glucose in Bacillus subtilis: regulation of the central metabolic pathways. Metab Eng. 5: 133-149 PubMed
- Ludwig, H., Homuth, G., Schmalisch, M., Dyka, F. M., Hecker, M., and Stülke, J. (2001) Transcription of glycolytic genes and operons in Bacillus subtilis: evidence for the presence of multiple levels of control of the gapA operon. Mol Microbiol 41, 409-422.PubMed
- Jannière, L., Canceill, D., Suski, C., Kanga, S., Dalmais, B., Lestini, R., Monnier, A. F., Chapuis, J., Bolotin, A., Titok, M., Le Chatelier, E., and Ehrlich, S. D. (2007) Genetic evidence for a link between glycolysis and DNA replication. PLoS ONE 2, e447. PubMed
- Leyva-Vazquez, M. A., and Setlow, P. (1994) Cloning and nucleotide sequences of the genes encoding triose phosphate isomerase, phosphoglycerate mutase, and enolase from Bacillus subtilis. J Bacteriol 176: 3903-3910. PubMed
- Macek et al. (2007) The serine/ threonine/ tyrosine phosphoproteome of the model bacterium Bacillus subtilis. Mol. Cell. Proteomics 6: 697-707 PubMed