Difference between revisions of "LevF"

From SubtiWiki
Jump to: navigation, search
Line 93: Line 93:
 
* '''Sigma factor:''' [[SigL]]
 
* '''Sigma factor:''' [[SigL]]
  
* '''Regulation:''' repressed by glucose ([[CcpA]]) [http://www.ncbi.nlm.nih.gov/pubmed/12850135 PubMed],  carbon catabolite repression, induction by fructose
+
* '''Regulation:''' repressed by glucose ([[CcpA]]) ,  carbon catabolite repression, induction by fructose
  
 
* '''Regulatory mechanism:''' catabolite repression: transcription repression by [[CcpA]], transcription activator [[LevR]] is less active in the presence of glucose; induction: transcription activation by [[LevR]]
 
* '''Regulatory mechanism:''' catabolite repression: transcription repression by [[CcpA]], transcription activator [[LevR]] is less active in the presence of glucose; induction: transcription activation by [[LevR]]
Line 119: Line 119:
 
=References=
 
=References=
  
# Blencke et al. (2003) Transcriptional profiling of gene expression in response to glucose in ''Bacillus subtilis'': regulation of the central metabolic pathways. ''Metab Eng.'' '''5:''' 133-149 [http://www.ncbi.nlm.nih.gov/pubmed/12850135 PubMed]
+
# Blencke et al. (2003) Transcriptional profiling of gene expression in response to glucose in ''Bacillus subtilis'': regulation of the central metabolic pathways. ''Metab Eng.'' '''5:''' 133-149  
 
# Martin-Verstraete, I., Débarbouillé, M., Klier, A., and Rapoport, G. (1990) Levanase operon of ''Bacillus subtilis '' includes a fructose-specific phosphotransferase system regulating the expression of the operon. J Mol Biol 214: 657-671. [http://www.ncbi.nlm.nih.gov/sites/entrez/2117666 PubMed]
 
# Martin-Verstraete, I., Débarbouillé, M., Klier, A., and Rapoport, G. (1990) Levanase operon of ''Bacillus subtilis '' includes a fructose-specific phosphotransferase system regulating the expression of the operon. J Mol Biol 214: 657-671. [http://www.ncbi.nlm.nih.gov/sites/entrez/2117666 PubMed]
 
# Author1, Author2 & Author3 (year) Title ''Journal'' '''volume:''' page-page. [http://www.ncbi.nlm.nih.gov/sites/entrez/PMID PubMed]
 
# Author1, Author2 & Author3 (year) Title ''Journal'' '''volume:''' page-page. [http://www.ncbi.nlm.nih.gov/sites/entrez/PMID PubMed]

Revision as of 23:26, 2 April 2009

  • Description: fructose-specific phosphotransferase system, EIIC component

Gene name levF
Synonyms sacL
Essential no
Product fructose-specific phosphotransferase system,
EIIC component
Function fructose uptake and phosphorylation
MW, pI 27 kDa, 4.395
Gene length, protein length 807 bp, 269 aa
Immediate neighbours levG, levE
Gene sequence (+200bp) Protein sequence
Genetic context
LevF context.gif
This image was kindly provided by SubtiList




The gene

Basic information

  • Coordinates:

Phenotypes of a mutant

Database entries

  • DBTBS entry: no entry
  • SubtiList entry: [1]

Additional information

The protein

Basic information/ Evolution

  • Catalyzed reaction/ biological activity:
  • Protein family:
  • Paralogous protein(s):

Extended information on the protein

  • Kinetic information:
  • Domains:
  • Modification:
  • Cofactor(s):
  • Effectors of protein activity:
  • Interactions:
  • Localization:

Database entries

  • Structure:
  • Swiss prot entry:
  • KEGG entry: [2]
  • E.C. number:

Additional information

Expression and regulation

  • Regulation: repressed by glucose (CcpA) , carbon catabolite repression, induction by fructose
  • Regulatory mechanism: catabolite repression: transcription repression by CcpA, transcription activator LevR is less active in the presence of glucose; induction: transcription activation by LevR
  • Additional information:

Biological materials

  • Mutant:
  • Expression vector:
  • lacZ fusion:
  • GFP fusion:
  • two-hybrid system:
  • Antibody:

Labs working on this gene/protein

Your additional remarks

References

  1. Blencke et al. (2003) Transcriptional profiling of gene expression in response to glucose in Bacillus subtilis: regulation of the central metabolic pathways. Metab Eng. 5: 133-149
  2. Martin-Verstraete, I., Débarbouillé, M., Klier, A., and Rapoport, G. (1990) Levanase operon of Bacillus subtilis includes a fructose-specific phosphotransferase system regulating the expression of the operon. J Mol Biol 214: 657-671. PubMed
  3. Author1, Author2 & Author3 (year) Title Journal volume: page-page. PubMed