Difference between revisions of "HemAT"

From SubtiWiki
Jump to: navigation, search
(Extended information on the protein)
Line 93: Line 93:
 
* '''[[Localization]]:'''
 
* '''[[Localization]]:'''
 
** forms clusters at the cell poles {{PubMed|21515776}}
 
** forms clusters at the cell poles {{PubMed|21515776}}
** homogeneous cytoplsmic distribution in chain-forming cells during the logarithmic phase {{PubMed|23180473}}
+
** homogeneous cytoplasmic distribution in chain-forming cells during the logarithmic phase {{PubMed|23180473}}
 
** polar foci in individual cells at later growth stages {{PubMed|23180473}}
 
** polar foci in individual cells at later growth stages {{PubMed|23180473}}
  

Revision as of 14:49, 3 July 2015

  • Description: soluble chemotaxis receptor, heme-containing O(2) sensor protein

Gene name hemAT
Synonyms yhfV
Essential no
Product haem-based aerotactic transducer
Function movement towards oxygen
Gene expression levels in SubtiExpress: hemAT
Interactions involving this protein in SubtInteract: HemAT
MW, pI 48 kDa, 5.441
Gene length, protein length 1296 bp, 432 aa
Immediate neighbours yhfU, yhfW
Sequences Protein DNA DNA_with_flanks
Genetic context
HemAT context.gif
This image was kindly provided by SubtiList
Expression at a glance   PubMed
HemAT expression.png















Categories containing this gene/protein

motility and chemotaxis

This gene is a member of the following regulons

SigD regulon

The gene

Basic information

  • Locus tag: BSU10380

Phenotypes of a mutant

  • not essential for pellicle biofilm formation, but mutant is outcompeted by the wild-type strain when competed during pellicle formation PubMed
  • NCIB3610 hemAT mutant has higher fitness than hag mutant during pellicle formation PubMed
  • NCIB3610 hemAT-hag double mutant has similar fitness to single hag mutant during pellicle formation PubMed

Database entries

  • DBTBS entry: [1]
  • SubtiList entry: [2]

Additional information

The protein

  • HemAT protein has a moderate oxygen affinity PubMed

Basic information/ Evolution

  • Catalyzed reaction/ biological activity:
  • Protein family:
  • Paralogous protein(s):

Extended information on the protein

  • Kinetic information:
  • Domains:
  • Modification:
  • Cofactor(s): heme
  • Effectors of protein activity:
  • Localization:
    • forms clusters at the cell poles PubMed
    • homogeneous cytoplasmic distribution in chain-forming cells during the logarithmic phase PubMed
    • polar foci in individual cells at later growth stages PubMed

Database entries

  • KEGG entry: [3]
  • E.C. number:

Additional information

Expression and regulation

  • Regulation:
  • Regulatory mechanism:
  • Additional information:
    • in minimal medium, HemAT is present with 19,000 +/- 3,900 molecules per cell PubMed
    • number of protein molecules per cell (minimal medium with glucose and ammonium): 1095 PubMed
    • number of protein molecules per cell (complex medium with amino acids, without glucose): 1803 PubMed
    • number of protein molecules per cell (minimal medium with glucose and ammonium, exponential phase): 3169 PubMed
    • number of protein molecules per cell (minimal medium with glucose and ammonium, early stationary phase after glucose exhaustion): 966 PubMed
    • number of protein molecules per cell (minimal medium with glucose and ammonium, late stationary phase after glucose exhaustion): 1236 PubMed

Biological materials

  • Mutant:
    • TB239 (hemAT::neo in 168) PubMed
    • TB241 (hemAT::neo in NCIB3610) PubMed
    • TB244 amyE::Phy-sfgfp (hemAT::neo in NCIB3610 with constitutive expressed sfgfp) PubMed
    • TB243 amyE::Phy-mKATE2 (hemAT::neo in NCIB3610 with constitutive expressed mKATE2) PubMed
  • Expression vector:
  • lacZ fusion:
  • GFP fusion:
  • two-hybrid system:
  • Antibody:

Labs working on this gene/protein

Your additional remarks

References

Reviews

Markéta Martínková, Kenichi Kitanishi, Toru Shimizu
Heme-based globin-coupled oxygen sensors: linking oxygen binding to functional regulation of diguanylate cyclase, histidine kinase, and methyl-accepting chemotaxis.
J Biol Chem: 2013, 288(39);27702-11
[PubMed:23928310] [WorldCat.org] [DOI] (I p)

Original publications