Difference between revisions of "ThrS"

From SubtiWiki
Jump to: navigation, search
Line 57: Line 57:
  
 
=== Database entries ===
 
=== Database entries ===
 +
* '''BsubCyc:''' [http://bsubcyc.org/BSUB/NEW-IMAGE?type=NIL&object=BSU28950&redirect=T BSU28950]
  
 
* '''DBTBS entry:''' [http://dbtbs.hgc.jp/COG/prom/thrS.html]
 
* '''DBTBS entry:''' [http://dbtbs.hgc.jp/COG/prom/thrS.html]
Line 91: Line 92:
  
 
=== Database entries ===
 
=== Database entries ===
 +
* '''BsubCyc:''' [http://bsubcyc.org/BSUB/NEW-IMAGE?type=NIL&object=BSU28950&redirect=T BSU28950]
  
 
* '''Structure:''' [http://www.rcsb.org/pdb/cgi/explore.cgi?pdbId=1TJE 1TJE] (from ''Escherichia coli'', 44% identity, 63% similarity) {{PubMed|15525511}}
 
* '''Structure:''' [http://www.rcsb.org/pdb/cgi/explore.cgi?pdbId=1TJE 1TJE] (from ''Escherichia coli'', 44% identity, 63% similarity) {{PubMed|15525511}}

Revision as of 14:28, 2 April 2014

  • Description: threonyl-tRNA synthetase (major)

Gene name thrS
Synonyms
Essential no
Product threonyl-tRNA synthetase (major)
Function translation
Gene expression levels in SubtiExpress: thrS
Metabolic function and regulation of this protein in SubtiPathways:
thrS
MW, pI 73 kDa, 5.214
Gene length, protein length 1929 bp, 643 aa
Immediate neighbours ysaA, ytxC
Sequences Protein DNA DNA_with_flanks
Genetic context
ThrS context.gif
This image was kindly provided by SubtiList
Expression at a glance   PubMed
ThrS expression.png















Categories containing this gene/protein

translation, most abundant proteins

This gene is a member of the following regulons

T-box

The gene

Basic information

  • Locus tag: BSU28950

Phenotypes of a mutant

Database entries

  • DBTBS entry: [1]
  • SubtiList entry: [2]

Additional information

The protein

Basic information/ Evolution

  • Catalyzed reaction/ biological activity: ATP + L-threonine + tRNA(Thr) = AMP + diphosphate + L-threonyl-tRNA(Thr) (according to Swiss-Prot)
  • Protein family: class-II aminoacyl-tRNA synthetase family (according to Swiss-Prot)
  • Paralogous protein(s): ThrZ, one of the two proteins has to be present for viability PubMed

Extended information on the protein

  • Kinetic information:
  • Modification:Cys573 is S-bacillithiolated by NaOCl stress PubMed
  • Effectors of protein activity:

Database entries

  • Structure: 1TJE (from Escherichia coli, 44% identity, 63% similarity) PubMed
  • KEGG entry: [3]

Additional information

  • subject to Clp-dependent proteolysis upon glucose starvation PubMed

Expression and regulation

  • Regulation:
    • induced by threonine limitation (T-box) PubMed
    • expression transiently increases in the forespore PubMed

Biological materials

  • Mutant:
  • Expression vector:
  • lacZ fusion:
  • GFP fusion:
  • two-hybrid system:
  • Antibody:

Labs working on this gene/protein

Your additional remarks

References

Bui Khanh Chi, Alexandra A Roberts, Tran Thi Thanh Huyen, Katrin Bäsell, Dörte Becher, Dirk Albrecht, Chris J Hamilton, Haike Antelmann
S-bacillithiolation protects conserved and essential proteins against hypochlorite stress in firmicutes bacteria.
Antioxid Redox Signal: 2013, 18(11);1273-95
[PubMed:22938038] [WorldCat.org] [DOI] (I p)

Alex Rosenberg, Lior Sinai, Yoav Smith, Sigal Ben-Yehuda
Dynamic expression of the translational machinery during Bacillus subtilis life cycle at a single cell level.
PLoS One: 2012, 7(7);e41921
[PubMed:22848659] [WorldCat.org] [DOI] (I p)

Ana Gutiérrez-Preciado, Tina M Henkin, Frank J Grundy, Charles Yanofsky, Enrique Merino
Biochemical features and functional implications of the RNA-based T-box regulatory mechanism.
Microbiol Mol Biol Rev: 2009, 73(1);36-61
[PubMed:19258532] [WorldCat.org] [DOI] (I p)

Helena B Thomaides, Ella J Davison, Lisa Burston, Hazel Johnson, David R Brown, Alison C Hunt, Jeffery Errington, Lloyd Czaplewski
Essential bacterial functions encoded by gene pairs.
J Bacteriol: 2007, 189(2);591-602
[PubMed:17114254] [WorldCat.org] [DOI] (P p)

Christine Eymann, Annette Dreisbach, Dirk Albrecht, Jörg Bernhardt, Dörte Becher, Sandy Gentner, Le Thi Tam, Knut Büttner, Gerrit Buurman, Christian Scharf, Simone Venz, Uwe Völker, Michael Hecker
A comprehensive proteome map of growing Bacillus subtilis cells.
Proteomics: 2004, 4(10);2849-76
[PubMed:15378759] [WorldCat.org] [DOI] (P p)

Harald Putzer, Ciarán Condon, Dominique Brechemier-Baey, Renata Brito, Marianne Grunberg-Manago
Transfer RNA-mediated antitermination in vitro.
Nucleic Acids Res: 2002, 30(14);3026-33
[PubMed:12136084] [WorldCat.org] [DOI] (I p)

A Wipat, N Carter, S C Brignell, B J Guy, K Piper, J Sanders, P T Emmerson, C R Harwood
The dnaB-pheA (256 degrees-240 degrees) region of the Bacillus subtilis chromosome containing genes responsible for stress responses, the utilization of plant cell walls and primary metabolism.
Microbiology (Reading): 1996, 142 ( Pt 11);3067-78
[PubMed:8969504] [WorldCat.org] [DOI] (P p)

H Putzer, S Laalami, A A Brakhage, C Condon, M Grunberg-Manago
Aminoacyl-tRNA synthetase gene regulation in Bacillus subtilis: induction, repression and growth-rate regulation.
Mol Microbiol: 1995, 16(4);709-18
[PubMed:7476165] [WorldCat.org] [DOI] (P p)

N Gendron, H Putzer, M Grunberg-Manago
Expression of both Bacillus subtilis threonyl-tRNA synthetase genes is autogenously regulated.
J Bacteriol: 1994, 176(2);486-94
[PubMed:8288542] [WorldCat.org] [DOI] (P p)

H Putzer, N Gendron, M Grunberg-Manago
Co-ordinate expression of the two threonyl-tRNA synthetase genes in Bacillus subtilis: control by transcriptional antitermination involving a conserved regulatory sequence.
EMBO J: 1992, 11(8);3117-27
[PubMed:1379177] [WorldCat.org] [DOI] (P p)