Difference between revisions of "GapA"
(→References) |
(→References) |
||
Line 136: | Line 136: | ||
# Blencke, H.-M., Homuth, G., Ludwig, H., Mäder, U., Hecker, M. & Stülke, J. (2003) Transcriptional profiling of gene expression in response to glucose in Bacillus subtilis: regulation of the central metabolic pathways. Metab. Engn. 5: 133-149. [http://www.ncbi.nlm.nih.gov/sites/entrez/12850135 PubMed] | # Blencke, H.-M., Homuth, G., Ludwig, H., Mäder, U., Hecker, M. & Stülke, J. (2003) Transcriptional profiling of gene expression in response to glucose in Bacillus subtilis: regulation of the central metabolic pathways. Metab. Engn. 5: 133-149. [http://www.ncbi.nlm.nih.gov/sites/entrez/12850135 PubMed] | ||
+ | # Commichau, F. M., Rothe, F. M., Herzberg, C., Wagner, E., Hellwig, D., Lehnik-Habrink, M., Hammer, E., Völker, U. & Stülke, J. Novel activities of glycolytic enzymes in Bacillus subtilis: Interactions with essential proteins involved in mRNA processing. subm. | ||
# Doan, T., and S. Aymerich. 2003. Regulation of the central glycolytic pathways in Bacillus subtilis: binding of the repressor CggR to its single DNA target sequence is modulated by fructose-1,6-bisphosphate. Mol. Microbiol. 47: 1709-1721. [http://www.ncbi.nlm.nih.gov/sites/entrez/12622823 PubMed] | # Doan, T., and S. Aymerich. 2003. Regulation of the central glycolytic pathways in Bacillus subtilis: binding of the repressor CggR to its single DNA target sequence is modulated by fructose-1,6-bisphosphate. Mol. Microbiol. 47: 1709-1721. [http://www.ncbi.nlm.nih.gov/sites/entrez/12622823 PubMed] | ||
# Evguenieva-Hackenberg, E., Schiltz, E., and Klug, G. (2002) Dehydrogenases from all three domains of life cleave RNA. J Biol Chem 277, 46145-46150. [http://www.ncbi.nlm.nih.gov/sites/entrez/12359717 PubMed] | # Evguenieva-Hackenberg, E., Schiltz, E., and Klug, G. (2002) Dehydrogenases from all three domains of life cleave RNA. J Biol Chem 277, 46145-46150. [http://www.ncbi.nlm.nih.gov/sites/entrez/12359717 PubMed] |
Revision as of 17:28, 8 January 2009
- Description: Glyceraldehyde 3-phosphate dehydrogenase, NAD-dependent, glycolytic enzyme
Gene name | gapA |
Synonyms | |
Essential | Yes (PubMed) |
Product | glyceraldehyde 3-phosphate dehydrogenase |
Function | catabolic enzyme in glycolysis |
MW, pI | 35.7 kDa, 5.03 |
Gene length, protein length | 1005 bp, 335 amino acids |
Immediate neighbours | cggR, pgk |
Gene sequence (+200bp) | Protein sequence |
Genetic context |
Contents
The gene
Basic information
- Coordinates:
Phenotypes of a mutant
essential
Database entries
- DBTBS entry: [1]
- SubtiList entry:[2]
Additional information
The protein
Basic information/ Evolution
- Catalyzed reaction/ biological activity: glyceraldehyde-3-phosphate dehydrogenase, (NADH-dependent). Catalyzes the reaction from glyceraldehyde-3-phosphate to 1.3-bi-phosphoglycerate. This reaction is part of the glycolysis.
- Protein family:
- Paralogous protein(s): GapB
Extended information on the protein
- Kinetic information: K(M) for NAD: 5.7 mM, K(cat) for NAD: 70/sec (determined for GapA from Geobacillus stearothermophilus) PubMed
- Domains:
- Modification: Phosphorylation (STY)
- Cofactor(s):
- Effectors of protein activity:
- Interactions:
- GapA-PtsH: HPr(Ser-46-P) binds GapA resulting in a slight inhibition of enzymatic activity.PubMed
- GapA-Crh: Crh(Ser-46-P) binds GapA resulting in a slight inhibition of enzymatic activity.PubMed
- Localization: membrane and cytoplasm
Database entries
- Structure:
- Swiss prot entry: P09124
- KEGG entry: KEGG
- E.C. number: 1.2.1.12
Additional information
GAP dehydrogenases from different sources (incl. Geobacillus stearothermophilus) were shown to cleave RNA (PubMed). Moreover, mutations in gapA from B. subtilis can suppress mutations in genes involved in DNA replication (PubMed).
Expression and regulation
The primary mRNAs of the operon are highly unstable. The primary mRNA is subject to processing at the very end of the cggR open reading frame. This results in stable mature gapA and gapA-pgk-tpiA-pgm-eno mRNAs. The processing event requires the Rny protein.
- Sigma factor: SigA
- Regulatory mechanism: repression
- Database entries: DBTBS
- Additional information: GapA is one of the most abundant proteins in the cell. In the presence of glucose, there are about 25,000 GapA molecules per cell (PubMed).
Biological materials
- Mutant: essential
- Expression vector: pGP90 (N-terminal Strep-tag, purification from B. subtilis), pGP704 (N-terminal His-tag) (available in Stülke lab)
- lacZ fusion: pGP506 (in pAC7), pGP512 (in pAC6) (available in Stülke lab)
- GFP fusion:
- Antibody: available in Stülke lab
Labs working on this gene/protein
Stephane Aymerich, Microbiology and Molecular Genetics, INRA Paris-Grignon, France
Jörg Stülke, University of Göttingen, Germany homepage
Your additional remarks
References
- Blencke, H.-M., Homuth, G., Ludwig, H., Mäder, U., Hecker, M. & Stülke, J. (2003) Transcriptional profiling of gene expression in response to glucose in Bacillus subtilis: regulation of the central metabolic pathways. Metab. Engn. 5: 133-149. PubMed
- Commichau, F. M., Rothe, F. M., Herzberg, C., Wagner, E., Hellwig, D., Lehnik-Habrink, M., Hammer, E., Völker, U. & Stülke, J. Novel activities of glycolytic enzymes in Bacillus subtilis: Interactions with essential proteins involved in mRNA processing. subm.
- Doan, T., and S. Aymerich. 2003. Regulation of the central glycolytic pathways in Bacillus subtilis: binding of the repressor CggR to its single DNA target sequence is modulated by fructose-1,6-bisphosphate. Mol. Microbiol. 47: 1709-1721. PubMed
- Evguenieva-Hackenberg, E., Schiltz, E., and Klug, G. (2002) Dehydrogenases from all three domains of life cleave RNA. J Biol Chem 277, 46145-46150. PubMed
- Fillinger, S., Boschi-Muller, S., Azza, S., Dervyn, E., Branlant, G., and Aymerich, S. (2000) Two glyceraldehyde-3-phosphate dehydrogenases with opposite physiological roles in a nonphotosynthetic bacterium. J Biol Chem 275, 14031-14037. PubMed
- Jannière, L., Canceill, D., Suski, C., Kanga, S., Dalmais, B., Lestini, R., Monnier, A. F., Chapuis, J., Bolotin, A., Titok, M., Le Chatelier, E., and Ehrlich, S. D. (2007) Genetic evidence for a link between glycolysis and DNA replication. PLoS ONE 2, e447. PubMed
- Ludwig, H., Homuth, G., Schmalisch, M., Dyka, F. M., Hecker, M., and Stülke, J. (2001) Transcription of glycolytic genes and operons in Bacillus subtilis: evidence for the presence of multiple levels of control of the gapA operon. Mol Microbiol 41, 409-422.PubMed
- Ludwig, H., Rebhan, N., Blencke, H.-M., Merzbacher, M. & Stülke, J. (2002). Control of the glycolytic gapA operon by the catabolite control protein A in Bacillus subtilis: a novel mechanism of CcpA-mediated regulation. Mol Microbiol 45, 543-553.PubMed
- Meinken, C., Blencke, H. M., Ludwig, H., and Stülke, J. (2003) Expression of the glycolytic gapA operon in Bacillus subtilis: differential synthesis of proteins encoded by the operon. Microbiology 149, 751-761. PubMed
- Pompeo et al. (2007) Interaction of GapA with HPr and its homologue, Crh: Novel levels of regulation of a key step of glycolysis in Bacillus subtilis? J Bacteriol 189, 1154-1157.PubMed
- Thomaides, H. B., Davison, E. J., Burston, L., Johnson, H., Brown, D. R., Hunt, A. C., Errington, J., and Czaplewski, L. (2007) Essential bacterial functions encoded by gene pairs. J Bacteriol 189, 591-602. PubMed
- Tobisch, S., Zühlke, D., Bernhardt, J., Stülke, J., and Hecker, M. (1999) Role of CcpA in regulation of the central pathways of carbon catabolism in Bacillus subtilis. J Bacteriol 181, 6996-7004.PubMed