Difference between revisions of "PtsG"

From SubtiWiki
Jump to: navigation, search
Line 1: Line 1:
* '''Description:''' trigger enzyme: major glucose permease of the PTS, EIICBA(Glc) and control of [[GlcT]] activity <br/><br/>
+
* '''Description:''' [[trigger enzymes|trigger enzyme]]: major glucose permease of the PTS, EIICBA(Glc) and control of [[GlcT]] activity <br/><br/>
  
 
{| align="right" border="1" cellpadding="2"  
 
{| align="right" border="1" cellpadding="2"  
Line 10: Line 10:
 
|style="background:#ABCDEF;" align="center"| '''Essential''' || no
 
|style="background:#ABCDEF;" align="center"| '''Essential''' || no
 
|-
 
|-
|style="background:#ABCDEF;" align="center"| '''Product''' || glucose-specific enzyme IICBA component
+
|style="background:#ABCDEF;" align="center"| '''Product''' || [[trigger enzymes|trigger enzyme]]: glucose-specific enzyme IICBA component
 
|-
 
|-
 
|style="background:#ABCDEF;" align="center"|'''Function''' || glucose transport and phosphorylation, control of [[GlcT]] activity
 
|style="background:#ABCDEF;" align="center"|'''Function''' || glucose transport and phosphorylation, control of [[GlcT]] activity

Revision as of 19:43, 1 September 2009

  • Description: trigger enzyme: major glucose permease of the PTS, EIICBA(Glc) and control of GlcT activity

Gene name ptsG
Synonyms ptsX, crr
Essential no
Product trigger enzyme: glucose-specific enzyme IICBA component
Function glucose transport and phosphorylation, control of GlcT activity
Metabolic function and regulation of this protein in SubtiPathways:
Central C-metabolism, Sugar catabolism
MW, pI 75,3 kDa, 5.40
Gene length, protein length 2097 bp, 699 amino acids
Immediate neighbours glcT, ptsH
Get the DNA and protein sequences
(Barbe et al., 2009)
Genetic context
PtsG context.gif
This image was kindly provided by SubtiList







The gene

Basic information

  • Locus tag: BSU13890

Phenotypes of a mutant

Database entries

  • DBTBS entry: [1]
  • SubtiList entry: [2]

Additional information

The protein

Basic information/ Evolution

  • Catalyzed reaction/ biological activity: transport and phosphorylation of glucose, receives a phosphate from HPr at the IIA domain (His-620), the phosphate group is then transferred to the IIB domain (Cys-461) an finally to the incoming glucose. In the absence of glucose, PtsG phosphorylates and thereby inactivates the transcriptional antiterminator GlcT.
  • Protein family: PTS permease, glucose permease (Glc) family PubMed, PTS enzyme II, glucose family
  • Paralogous protein(s):

Extended information on the protein

  • Kinetic information:
  • Domains:
    • 11x transmembrane domain (16–36, 89–109, 139–159, 180–200, 233–253, 283–303, 313–333, 338–358, 365–385, 388–408)
    • PTS EIIC domain ( 1-424)
    • PTS EIIB domain (439–520)
    • PTS EIIA domain (568–672)
  • Modification: transient phosphorylation (HPr-dependent) on His-620, then internal phosphotransfer from His-620 to Cys-461
  • Cofactor(s):
  • Effectors of protein activity:
  • Localization: membrane protein PubMed

Database entries

  • Structure: 1AX3 (IIA domain), 1GPR (IIA domain), IIA domain NCBI, NMR IIA domain NCBI
  • KEGG entry: [3]

Additional information

Expression and regulation

  • Regulation: expression activated by glucose (32 fold) PubMed
  • Regulatory mechanism: transcriptional antitermination via the GlcT-dependent RNA-switch PubMed
  • Additional information:

Biological materials

  • Mutant: GP474 (cat), QB5436 (spc), QB5445 (erm), available in Stülke lab
  • Expression vector: pGP123 (domains BA, in pWH844), pGP123 (domains BA, mut: H620D, in pWH844), pGP428 (EIIB, in pWH844), pGP437(EIIA in pWH844, with thrombin cleavage site), available in Stülke lab
  • lacZ fusion: pGP34 (pAC5), pGP66 (pAC7), pGP606 (mutant terminator, pAC6), pGP532 (pAC7), series of promoter deletions are available in pAC5 and pAC6, series of RAT mutants are available in pAC6, available in Stülke lab
  • GFP fusion:
  • Antibody:

Labs working on this gene/protein

Jörg Stülke, University of Göttingen, Germany Homepage

Your additional remarks

References

Hannes Hahne, Susanne Wolff, Michael Hecker, Dörte Becher
From complementarity to comprehensiveness--targeting the membrane proteome of growing Bacillus subtilis by divergent approaches.
Proteomics: 2008, 8(19);4123-36
[PubMed:18763711] [WorldCat.org] [DOI] (I p)

Oliver Schilling, Christina Herzberg, Tina Hertrich, Hanna Vörsmann, Dirk Jessen, Sebastian Hübner, Fritz Titgemeyer, Jörg Stülke
Keeping signals straight in transcription regulation: specificity determinants for the interaction of a family of conserved bacterial RNA-protein couples.
Nucleic Acids Res: 2006, 34(21);6102-15
[PubMed:17074746] [WorldCat.org] [DOI] (I p)

Oliver Schilling, Ines Langbein, Michael Müller, Matthias H Schmalisch, Jörg Stülke
A protein-dependent riboswitch controlling ptsGHI operon expression in Bacillus subtilis: RNA structure rather than sequence provides interaction specificity.
Nucleic Acids Res: 2004, 32(9);2853-64
[PubMed:15155854] [WorldCat.org] [DOI] (I e)

Matthias H Schmalisch, Steffi Bachem, Jörg Stülke
Control of the Bacillus subtilis antiterminator protein GlcT by phosphorylation. Elucidation of the phosphorylation chain leading to inactivation of GlcT.
J Biol Chem: 2003, 278(51);51108-15
[PubMed:14527945] [WorldCat.org] [DOI] (P p)

Hans-Matti Blencke, Georg Homuth, Holger Ludwig, Ulrike Mäder, Michael Hecker, Jörg Stülke
Transcriptional profiling of gene expression in response to glucose in Bacillus subtilis: regulation of the central metabolic pathways.
Metab Eng: 2003, 5(2);133-49
[PubMed:12850135] [WorldCat.org] [DOI] (P p)

Jonathan Reizer, Steffi Bachem, Aiala Reizer, Maryvonne Arnaud, Milton H Saier, Jörg Stülke
Novel phosphotransferase system genes revealed by genome analysis - the complete complement of PTS proteins encoded within the genome of Bacillus subtilis.
Microbiology (Reading): 1999, 145 ( Pt 12);3419-3429
[PubMed:10627040] [WorldCat.org] [DOI] (P p)

I Langbein, S Bachem, J Stülke
Specific interaction of the RNA-binding domain of the bacillus subtilis transcriptional antiterminator GlcT with its RNA target, RAT.
J Mol Biol: 1999, 293(4);795-805
[PubMed:10543968] [WorldCat.org] [DOI] (P p)

S Bachem, J Stülke
Regulation of the Bacillus subtilis GlcT antiterminator protein by components of the phosphotransferase system.
J Bacteriol: 1998, 180(20);5319-26
[PubMed:9765562] [WorldCat.org] [DOI] (P p)

S Bachem, N Faires, J Stülke
Characterization of the presumptive phosphorylation sites of the Bacillus subtilis glucose permease by site-directed mutagenesis: implication in glucose transport and catabolite repression.
FEMS Microbiol Lett: 1997, 156(2);233-8
[PubMed:9513271] [WorldCat.org] [DOI] (P p)

J Stülke, I Martin-Verstraete, M Zagorec, M Rose, A Klier, G Rapoport
Induction of the Bacillus subtilis ptsGHI operon by glucose is controlled by a novel antiterminator, GlcT.
Mol Microbiol: 1997, 25(1);65-78
[PubMed:11902727] [WorldCat.org] [DOI] (P p)

M Zagorec, P W Postma
Cloning and nucleotide sequence of the ptsG gene of Bacillus subtilis.
Mol Gen Genet: 1992, 234(2);325-8
[PubMed:1508157] [WorldCat.org] [DOI] (P p)

G Gonzy-Tréboul, J H de Waard, M Zagorec, P W Postma
The glucose permease of the phosphotransferase system of Bacillus subtilis: evidence for IIGlc and IIIGlc domains.
Mol Microbiol: 1991, 5(5);1241-9
[PubMed:1956301] [WorldCat.org] [DOI] (P p)

S L Sutrina, P Reddy, M H Saier, J Reizer
The glucose permease of Bacillus subtilis is a single polypeptide chain that functions to energize the sucrose permease.
J Biol Chem: 1990, 265(30);18581-9
[PubMed:2120236] [WorldCat.org] (P p)