Difference between revisions of "GlmS"
(→Expression and regulation) |
(→Expression and regulation) |
||
Line 95: | Line 95: | ||
* '''[[Sigma factor]]:''' | * '''[[Sigma factor]]:''' | ||
− | * '''Regulation:''' ''glmS'' is only expressed in the absence of glucosamine 6-phosphate ([[ | + | * '''Regulation:''' ''glmS'' is only expressed in the absence of glucosamine 6-phosphate ([[glmS]] [[ribozyme]]) |
− | * '''Regulatory mechanism:''' | + | * '''Regulatory mechanism:''' ''glmS'' [[ribozyme]]: glucosamine 6-phosphate binds the leader mRNA, and a [[riboswitch]] with ribozyme activity cleaves off the glmS section from the mRNA, resulting in stopp of transcript elongation |
* '''Additional information:''' subject to Clp-dependent proteolysis upon glucose starvation [http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=+17981983 PubMed] | * '''Additional information:''' subject to Clp-dependent proteolysis upon glucose starvation [http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=+17981983 PubMed] |
Revision as of 14:29, 5 June 2009
- Description: glutamine-fructose-6-phosphate transaminase
Gene name | glmS |
Synonyms | gcaA, ybxD |
Essential | yes PubMed |
Product | glutamine-fructose-6-phosphate transaminase |
Function | cell wall synthesis |
MW, pI | 65 kDa, 4.796 |
Gene length, protein length | 1800 bp, 600 aa |
Immediate neighbours | glmM, ybbU |
Get the DNA and protein sequences (Barbe et al., 2009) | |
Genetic context This image was kindly provided by SubtiList
|
Contents
The gene
Basic information
- Locus tag: BSU01780
Phenotypes of a mutant
essential PubMed
Database entries
- DBTBS entry: no entry
- SubtiList entry: [1]
Additional information
The protein
Basic information/ Evolution
- Catalyzed reaction/ biological activity: L-glutamine + D-fructose 6-phosphate = L-glutamate + D-glucosamine 6-phosphate (according to Swiss-Prot)
- Protein family:
- Paralogous protein(s):
Extended information on the protein
- Kinetic information:
- Domains:
- Modification:
- Cofactor(s):
- Effectors of protein activity:
- Interactions:
- Localization: cytoplasm (according to Swiss-Prot)
Database entries
- Structure:
- Swiss prot entry: P39754
- KEGG entry: [2]
- E.C. number: 2.6.1.16
Additional information
- subject to Clp-dependent proteolysis upon glucose starvation PubMed
Expression and regulation
- Regulatory mechanism: glmS ribozyme: glucosamine 6-phosphate binds the leader mRNA, and a riboswitch with ribozyme activity cleaves off the glmS section from the mRNA, resulting in stopp of transcript elongation
- Additional information: subject to Clp-dependent proteolysis upon glucose starvation PubMed
Biological materials
- Mutant:
- Expression vector:
- lacZ fusion:
- GFP fusion:
- two-hybrid system:
- Antibody:
Labs working on this gene/protein
Wade Winkler, University of Texas, USA, Homepage
Your additional remarks
References
Jennifer A Collins, Irnov Irnov, Stephanie Baker, Wade C Winkler
Mechanism of mRNA destabilization by the glmS ribozyme.
Genes Dev: 2007, 21(24);3356-68
[PubMed:18079181]
[WorldCat.org]
[DOI]
(P p)
Ulf Gerth, Holger Kock, Ilja Kusters, Stephan Michalik, Robert L Switzer, Michael Hecker
Clp-dependent proteolysis down-regulates central metabolic pathways in glucose-starved Bacillus subtilis.
J Bacteriol: 2008, 190(1);321-31
[PubMed:17981983]
[WorldCat.org]
[DOI]
(I p)
Kenneth Blount, Izabela Puskarz, Robert Penchovsky, Ronald Breaker
Development and application of a high-throughput assay for glmS riboswitch activators.
RNA Biol: 2006, 3(2);77-81
[PubMed:17114942]
[WorldCat.org]
[DOI]
(I p)
Ken J Hampel, Melissa M Tinsley
Evidence for preorganization of the glmS ribozyme ligand binding pocket.
Biochemistry: 2006, 45(25);7861-71
[PubMed:16784238]
[WorldCat.org]
[DOI]
(P p)
Adam Roth, Ali Nahvi, Mark Lee, Inbal Jona, Ronald R Breaker
Characteristics of the glmS ribozyme suggest only structural roles for divalent metal ions.
RNA: 2006, 12(4);607-19
[PubMed:16484375]
[WorldCat.org]
[DOI]
(P p)
Wade C Winkler, Ali Nahvi, Adam Roth, Jennifer A Collins, Ronald R Breaker
Control of gene expression by a natural metabolite-responsive ribozyme.
Nature: 2004, 428(6980);281-6
[PubMed:15029187]
[WorldCat.org]
[DOI]
(I p)
K Yoshida, K Kobayashi, Y Miwa, C M Kang, M Matsunaga, H Yamaguchi, S Tojo, M Yamamoto, R Nishi, N Ogasawara, T Nakayama, Y Fujita
Combined transcriptome and proteome analysis as a powerful approach to study genes under glucose repression in Bacillus subtilis.
Nucleic Acids Res: 2001, 29(3);683-92
[PubMed:11160890]
[WorldCat.org]
[DOI]
(I p)
D Mengin-Lecreulx, J van Heijenoort
Characterization of the essential gene glmM encoding phosphoglucosamine mutase in Escherichia coli.
J Biol Chem: 1996, 271(1);32-9
[PubMed:8550580]
[WorldCat.org]
[DOI]
(P p)
- Author1, Author2 & Author3 (year) Title Journal volume: page-page. PubMed