Difference between revisions of "SacP"
Line 35: | Line 35: | ||
=== Basic information === | === Basic information === | ||
− | * ''' | + | * '''Locus tag:''' |
===Phenotypes of a mutant === | ===Phenotypes of a mutant === |
Revision as of 00:45, 3 June 2009
- Description: trigger enzyme: sucrose-specific phosphotransferase system, EIIBC component
Gene name | sacP |
Synonyms | ipa-49d |
Essential | no |
Product | trigger enzyme: sucrose-specific phosphotransferase system, EIIBC component |
Function | sucrose uptake and phosphorylation, control of SacT activity |
MW, pI | 49 kDa, 7.026 |
Gene length, protein length | 1383 bp, 461 aa |
Immediate neighbours | sacA, ywcJ |
Get the DNA and protein sequences (Barbe et al., 2009) | |
Genetic context This image was kindly provided by SubtiList
|
Contents
The gene
Basic information
- Locus tag:
Phenotypes of a mutant
Database entries
- DBTBS entry: [1]
- SubtiList entry: [2]
Additional information
The protein
Basic information/ Evolution
- Catalyzed reaction/ biological activity: Protein EIIB N(pi)-phospho-L-histidine/cysteine + sugar = protein EIIB + sugar phosphate (according to Swiss-Prot)
- Protein family: PTS permease, sucrose permease (Scr) family PubMed
- Paralogous protein(s):
Extended information on the protein
- Kinetic information:
- Domains:
- Modification:
- Cofactor(s):
- Effectors of protein activity:
- Interactions:
- Localization: cell membrane (according to Swiss-Prot)
Database entries
- Structure:
- Swiss prot entry: P05306
- KEGG entry: BSU38050
- E.C. number: 2.7.1.69
Additional information
Expression and regulation
- Regulatory mechanism: CcpA: transcription repression
- Additional information:
Biological materials
- Mutant:
- Expression vector:
- lacZ fusion:
- GFP fusion:
- two-hybrid system:
- Antibody:
Labs working on this gene/protein
Your additional remarks
References
- Reizer et al. (1999) Novel phosphotransferase system genes revealed by genome analysis - the complete complement of PTS proteins encoded within the genome of Bacillus subtilis. Microbiology 145: 3419-3429 PubMed
- Mäder et al. (2002) Transcriptome and Proteome Analysis of Bacillus subtilis Gene Expression Modulated by Amino Acid Availability. J. Bacteriol 184: 1844288-4295 PubMed
- Fouet, A., Arnaud, M., Klier, A., and G. Rapoport. (1987) Bacillus subtilis sucrose-specific enzyme II of the phosphotransferase system: Expression in Escherichia coli and homology to enzymes II from enteric bacteria. Proc Natl Acad Sci USA 84: 8773-8777. PubMed
- Débarbouillé, M., Arnaud, M., Fouet, A., Klier, A., and Rapoport, G. (1990) The sacT gene regulating the sacPA operon in Bacillus subtilis shares strong homology with transcriptional antiterminators. J Bacteriol 172: 3966-3973. PubMed
- Arnaud, M., Débarbouillé, M., Rapoport, G., Saier, M. H., and Reizer, J. (1996) In vitro reconstitution of transcriptional antitermination by the SacT and SacY proteins of Bacillus subtilis. J Biol Chem 271: 18966-18972. PubMed
- Sutrina, S. L., Reddy, P., Saier, M. H., Jr & Reizer, J. (1990). The glucose permease of Bacillus subtilis is a single polypeptide chain that functions to energize the sucrose permease. J Biol Chem 265, 18581-18589. PubMed
- Author1, Author2 & Author3 (year) Title Journal volume: page-page. PubMed