Difference between revisions of "Sandbox"

From SubtiWiki
Jump to: navigation, search
Line 3: Line 3:
 
{| align="right" border="1" cellpadding="2"  
 
{| align="right" border="1" cellpadding="2"  
 
|-
 
|-
|style="background:#ABCDEF;" align="center"|'''Gene name'''
+
|style="background:#ABCDEF;" align="center"|'''Gene name''' glaube ich nicht
 
|''glmS''
 
|''glmS''
 
|-
 
|-

Revision as of 14:34, 28 July 2014

  • Description: glutamine-fructose-6-phosphate transaminase

Gene name glaube ich nicht glmS
Synonyms gcaA, ybxD
Essential yes PubMed
Product glutamine-fructose-6-phosphate transaminase
Function cell wall synthesis
Metabolic function and regulation of this protein in SubtiPathways:
sandbox
MW, pI 65 kDa, 4.796
Gene length, protein length 1800 bp, 600 aa
Immediate neighbours glmM, ybbU
Get the DNA and protein sequences
(Barbe et al., 2009)
Genetic context
File:Quintos.gif
This image was kindly provided by SubtiList
Genetic context
Test.gif
This image was kindly provided by SubtiList
Expression at a glance   PubMed
GlmS expression.png
























Categories containing this gene/protein

cell wall synthesis, biosynthesis of cell wall components, essential genes

This gene is a member of the following regulons

glmS ribozyme

The gene

Basic information

  • Locus tag: BSU01780

Phenotypes of a mutant

essential PubMed

Database entries

  • BsubCyc: [HELLO BSU00100]
  • BsubCyc: "
  • DBTBS entry: no entry
  • SubtiList entry: [1]

Additional information

The protein

Basic information/ Evolution

  • Catalyzed reaction/ biological activity: L-glutamine + D-fructose 6-phosphate = L-glutamate + D-glucosamine 6-phosphate (according to Swiss-Prot)
  • Protein family:
  • Paralogous protein(s):

Extended information on the protein

  • Kinetic information:
  • Domains:
  • Modification:
  • Cofactor(s):
  • Effectors of protein activity:

Database entries

  • BsubCyc: [HELLO BSU00100]
  • BsubCyc: BSU00240
  • Structure:
    • HIV2 (from Bacillus subtilis, 100% identity) PubMed
    • 2VF4 (GlmS from E. coli, 39% identity, 58% similarity) PubMed
    • the ribozyme: 3G8S, 3G9C, 3G8T, 3G95, 3G96 (all for the ribozyme from Bacillus anthracis), 2HO7 (the ribozyme from Thermonanaerobacter tengcongensis)
  • KEGG entry: [2]

Additional information

  • subject to Clp-dependent proteolysis upon glucose starvation PubMed

Expression and regulation

  • Regulation:
    • repressed by glucosamine, N-acetylglucosamine, N-propionylglucosamine or N-formylglucosamine PubMed
    • glmS is only expressed in the absence of glucosamine 6-phosphate (glmS ribozyme)
  • Regulatory mechanism: glmS ribozyme: glucosamine 6-phosphate binds the leader mRNA, and a riboswitch with ribozyme activity cleaves off the glmS section from the mRNA, resulting in stopp of transcript elongation
  • Additional information:
    • subject to Clp-dependent proteolysis upon glucose starvation PubMed
    • A ncRNA is predicted between glmM and glmS PubMed
    • number of protein molecules per cell (minimal medium with glucose and ammonium): 2000 PubMed
    • number of protein molecules per cell (complex medium with amino acids, without glucose): 4000 PubMed

Biological materials

  • Mutant:
  • Expression vector:
  • lacZ fusion:
  • GFP fusion:
  • two-hybrid system:
  • Antibody:

Labs working on this gene/protein

Wade Winkler, University of Texas, USA, Homepage

Your additional remarks

References

Reviews

Philippe Durand, Béatrice Golinelli-Pimpaneau, Stéphane Mouilleron, Bernard Badet, Marie-Ange Badet-Denisot
Highlights of glucosamine-6P synthase catalysis.
Arch Biochem Biophys: 2008, 474(2);302-17
[PubMed:18279655] [WorldCat.org] [DOI] (I p)


The glmS Ribozyme


Other Original Publications

Additional publications: PubMed

Irnov Irnov, Cynthia M Sharma, Jörg Vogel, Wade C Winkler
Identification of regulatory RNAs in Bacillus subtilis.
Nucleic Acids Res: 2010, 38(19);6637-51
[PubMed:20525796] [WorldCat.org] [DOI] (I p)

Stéphane Mouilleron, Marie-Ange Badet-Denisot, Béatrice Golinelli-Pimpaneau
Ordering of C-terminal loop and glutaminase domains of glucosamine-6-phosphate synthase promotes sugar ring opening and formation of the ammonia channel.
J Mol Biol: 2008, 377(4);1174-85
[PubMed:18295797] [WorldCat.org] [DOI] (I p)

Ulf Gerth, Holger Kock, Ilja Kusters, Stephan Michalik, Robert L Switzer, Michael Hecker
Clp-dependent proteolysis down-regulates central metabolic pathways in glucose-starved Bacillus subtilis.
J Bacteriol: 2008, 190(1);321-31
[PubMed:17981983] [WorldCat.org] [DOI] (I p)

K Yoshida, K Kobayashi, Y Miwa, C M Kang, M Matsunaga, H Yamaguchi, S Tojo, M Yamamoto, R Nishi, N Ogasawara, T Nakayama, Y Fujita
Combined transcriptome and proteome analysis as a powerful approach to study genes under glucose repression in Bacillus subtilis.
Nucleic Acids Res: 2001, 29(3);683-92
[PubMed:11160890] [WorldCat.org] [DOI] (I p)

C J BATES, C A PASTERNAK
FURTHER STUDIES ON THE REGULATION OF AMINO SUGAR METABOLISM IN BACILLUS SUBTILIS.
Biochem J: 1965, 96(1);147-54
[PubMed:14343123] [WorldCat.org] [DOI] (P p)