gapB
168
glyceraldehyde-3-phosphate dehydrogenase, NADP-dependent, gluconeogenic enzyme, forms a transhydrogenation cycle with GapA for balancing of NADPH
Locus
BSU_29020
Molecular weight
37.32 kDa
Isoelectric point
6.45
Function
anabolic enzyme in gluconeogenesis
Product
glyceraldehyde-3-phosphate dehydrogenase 2
Essential
no
E.C.
1.2.1.59
Synonyms
gapB
Outlinks
Genomic Context
Categories containing this gene/protein
List of homologs in different organisms, belongs to COG0057 (Galperin et al., 2021)
This gene is a member of the following regulons
Gene
Coordinates
2,967,032 → 2,968,054
Phenotypes of a mutant
The protein
Catalyzed reaction/ biological activity
D-glyceraldehyde3-P + NADP+ + phosphate --> 1,3-bisphosphoglycerate + H+ + NADPH(according to UniProt)
This reaction is part of the gluconeogenesis
Protein family
glyceraldehyde-3-phosphate dehydrogenase family (with GapA, according to UniProt)
Nucleotid bindinge domain (12-13)
2x glyceraldehyde-3-P binding domain (151-153) & (210-211)
Structure
3PRL (PDB) (from B. halodurans)
Kinetic information
Michaelis-Menten PubMed
Paralogous protein(s)
Cytoplasm (Homogeneous) PubMed
Additional information
Expression and Regulation
Operons
Biological materials
Mutant
MGNA-A121 (gapB::erm), available at the NBRP B. subtilis, Japan
GP701 (gapB::spec), available in Stülke lab
LacZ fusion
pGP3312 (pgapB-lacZ cat), GP1679, available in Jörg Stülke's lab
Labs working on this gene/protein
Stephane Aymerich, Microbiology and Molecular Genetics, INRA Paris-Grignon, France
References
Crystal structure and biochemical analysis suggest that YjoB ATPase is a putative substrate-specific molecular chaperone.Proceedings of the National Academy of Sciences of the United States of America. 2022 Oct 11; 119(41):e2207856119. PMID: 36191235
Stability of proteins out of service - The GapB case of Bacillus subtilis.
Journal of bacteriology. 2017 Jul 31; . pii:JB.00148-17. doi:10.1128/JB.00148-17. PMID:28760849
High-Throughput Genetic Screens Identify a Large and Diverse Collection of New Sporulation Genes in Bacillus subtilis.
PLoS biology. 2016 Jan; 14(1):e1002341. doi:10.1371/journal.pbio.1002341. PMID:26735940
Single cell analysis of gene expression patterns during carbon starvation in Bacillus subtilis reveals large phenotypic variation.
Environmental microbiology. 2012 Dec; 14(12):3110-21. doi:10.1111/j.1462-2920.2012.02892.x. PMID:23033921
13C-flux analysis reveals NADPH-balancing transhydrogenation cycles in stationary phase of nitrogen-starving Bacillus subtilis.
The Journal of biological chemistry. 2012 Aug 10; 287(33):27959-70. doi:10.1074/jbc.M112.366492. PMID:22740702
Reconciling molecular regulatory mechanisms with noise patterns of bacterial metabolic promoters in induced and repressed states.
Proceedings of the National Academy of Sciences of the United States of America. 2012 Jan 03; 109(1):155-60. doi:10.1073/pnas.1110541108. PMID:22190493
CcpN controls central carbon fluxes in Bacillus subtilis.
Journal of bacteriology. 2008 Sep; 190(18):6178-87. doi:10.1128/JB.00552-08. PMID:18586936
Essential bacterial functions encoded by gene pairs.
Journal of bacteriology. 2007 Jan; 189(2):591-602. . PMID:17114254
Systematic localisation of proteins fused to the green fluorescent protein in Bacillus subtilis: identification of new proteins at the DNA replication factory.
Proteomics. 2006 Apr; 6(7):2135-46. . PMID:16479537
CcpN (YqzB), a novel regulator for CcpA-independent catabolite repression of Bacillus subtilis gluconeogenic genes.
Molecular microbiology. 2005 Mar; 55(5):1435-51. . PMID:15720552
S-adenosylmethionine decarboxylase of Bacillus subtilis is closely related to archaebacterial counterparts.
Molecular microbiology. 2000 Jun; 36(5):1135-47. . PMID:10844697
Two glyceraldehyde-3-phosphate dehydrogenases with opposite physiological roles in a nonphotosynthetic bacterium.
The Journal of biological chemistry. 2000 May 12; 275(19):14031-7. . PMID:10799476
Page visits: 8401
Time of last update: 2025-04-06 16:05:55
Author of last update: Jstuelk