Difference between revisions of "RsbW"
(→References) |
|||
Line 49: | Line 49: | ||
* '''Locus tag:''' BSU04720 | * '''Locus tag:''' BSU04720 | ||
+ | |||
+ | [http://genome.jouy.inra.fr/cgi-bin/seb/viewdetail.py?id=rsbW_522414_522896_1 Expression] | ||
===Phenotypes of a mutant === | ===Phenotypes of a mutant === |
Revision as of 14:14, 24 January 2012
- Description: Anti-SigB, protein serine kinase, phosphorylates RsbV
Gene name | rsbW |
Synonyms | |
Essential | no |
Product | anti-SigB, protein serine kinase |
Function | control of SigB activity |
Interactions involving this protein in SubtInteract: RsbW | |
Metabolic function and regulation of this protein in SubtiPathways: Stress | |
MW, pI | 17 kDa, 4.285 |
Gene length, protein length | 480 bp, 160 aa |
Immediate neighbours | rsbV, sigB |
Get the DNA and protein sequences (Barbe et al., 2009) | |
Genetic context This image was kindly provided by SubtiList
|
Contents
Categories containing this gene/protein
protein modification, sigma factors and their control, general stress proteins (controlled by SigB)
This gene is a member of the following regulons
The gene
Basic information
- Locus tag: BSU04720
Phenotypes of a mutant
Database entries
- DBTBS entry: [1]
- SubtiList entry: [2]
Additional information
The protein
Basic information/ Evolution
- Catalyzed reaction/ biological activity: ATP + a protein = ADP + a phosphoprotein (according to Swiss-Prot)
- Protein family: anti-sigma-factor family (according to Swiss-Prot)
- Paralogous protein(s):
Extended information on the protein
- Kinetic information:
- Domains:
- Modification:
- Cofactor(s):
- Effectors of protein activity:
Database entries
- Structure:
- UniProt: P17904
- KEGG entry: [3]
- E.C. number:
Additional information
Expression and regulation
- Additional information:
Biological materials
- Mutant:
- Expression vector:
- lacZ fusion:
- GFP fusion:
- two-hybrid system:
- Antibody:
Labs working on this gene/protein
- Bill Haldenwang, San Antonio, USA
- Chet Price, Davis, USA homepage
Your additional remarks
References
Locke JC, Young JW, Fontes M, Hernández Jiménez MJ, Elowitz MB Stochastic pulse regulation in bacterial stress response. Science. 2011 334:366-369. PubMed:21979936
Gudrun Holtmann, Matthias Brigulla, Leif Steil, Alexandra Schütz, Karsta Barnekow, Uwe Völker, Erhard Bremer
RsbV-independent induction of the SigB-dependent general stress regulon of Bacillus subtilis during growth at high temperature.
J Bacteriol: 2004, 186(18);6150-8
[PubMed:15342585]
[WorldCat.org]
[DOI]
(P p)
Olivier Delumeau, Richard J Lewis, Michael D Yudkin
Protein-protein interactions that regulate the energy stress activation of sigma(B) in Bacillus subtilis.
J Bacteriol: 2002, 184(20);5583-9
[PubMed:12270815]
[WorldCat.org]
[DOI]
(P p)
M S Brody, K Vijay, C W Price
Catalytic function of an alpha/beta hydrolase is required for energy stress activation of the sigma(B) transcription factor in Bacillus subtilis.
J Bacteriol: 2001, 183(21);6422-8
[PubMed:11591687]
[WorldCat.org]
[DOI]
(P p)
A Petersohn, M Brigulla, S Haas, J D Hoheisel, U Völker, M Hecker
Global analysis of the general stress response of Bacillus subtilis.
J Bacteriol: 2001, 183(19);5617-31
[PubMed:11544224]
[WorldCat.org]
[DOI]
(P p)
U Voelker, A Voelker, W G Haldenwang
The yeast two-hybrid system detects interactions between Bacillus subtilis sigmaB regulators.
J Bacteriol: 1996, 178(23);7020-3
[PubMed:8955331]
[WorldCat.org]
[DOI]
(P p)
X Yang, C M Kang, M S Brody, C W Price
Opposing pairs of serine protein kinases and phosphatases transmit signals of environmental stress to activate a bacterial transcription factor.
Genes Dev: 1996, 10(18);2265-75
[PubMed:8824586]
[WorldCat.org]
[DOI]
(P p)
U Voelker, A Voelker, W G Haldenwang
Reactivation of the Bacillus subtilis anti-sigma B antagonist, RsbV, by stress- or starvation-induced phosphatase activities.
J Bacteriol: 1996, 178(18);5456-63
[PubMed:8808936]
[WorldCat.org]
[DOI]
(P p)
S Alper, A Dufour, D A Garsin, L Duncan, R Losick
Role of adenosine nucleotides in the regulation of a stress-response transcription factor in Bacillus subtilis.
J Mol Biol: 1996, 260(2);165-77
[PubMed:8764398]
[WorldCat.org]
[DOI]
(P p)
C M Kang, M S Brody, S Akbar, X Yang, C W Price
Homologous pairs of regulatory proteins control activity of Bacillus subtilis transcription factor sigma(b) in response to environmental stress.
J Bacteriol: 1996, 178(13);3846-53
[PubMed:8682789]
[WorldCat.org]
[DOI]
(P p)
A Dufour, U Voelker, A Voelker, W G Haldenwang
Relative levels and fractionation properties of Bacillus subtilis σ(B) and its regulators during balanced growth and stress.
J Bacteriol: 1996, 178(13);3701-9 sigma
[PubMed:8682769]
[WorldCat.org]
[DOI]
(P p)
U Voelker, A Voelker, B Maul, M Hecker, A Dufour, W G Haldenwang
Separate mechanisms activate sigma B of Bacillus subtilis in response to environmental and metabolic stresses.
J Bacteriol: 1995, 177(13);3771-80
[PubMed:7601843]
[WorldCat.org]
[DOI]
(P p)
A A Wise, C W Price
Four additional genes in the sigB operon of Bacillus subtilis that control activity of the general stress factor sigma B in response to environmental signals.
J Bacteriol: 1995, 177(1);123-33
[PubMed:8002610]
[WorldCat.org]
[DOI]
(P p)
A Dufour, W G Haldenwang
Interactions between a Bacillus subtilis anti-sigma factor (RsbW) and its antagonist (RsbV).
J Bacteriol: 1994, 176(7);1813-20
[PubMed:8144446]
[WorldCat.org]
[DOI]
(P p)
A K Benson, W G Haldenwang
Bacillus subtilis sigma B is regulated by a binding protein (RsbW) that blocks its association with core RNA polymerase.
Proc Natl Acad Sci U S A: 1993, 90(6);2330-4
[PubMed:8460143]
[WorldCat.org]
[DOI]
(P p)