Difference between revisions of "Papers of the month"
(→2011) |
(→2011) |
||
Line 6: | Line 6: | ||
<big>''Lehnik-Habrink M, Schaffer M, Mäder U, Diethmaier C, Herzberg C, Stülke J'' </big> | <big>''Lehnik-Habrink M, Schaffer M, Mäder U, Diethmaier C, Herzberg C, Stülke J'' </big> | ||
<big>'''RNA processing in ''Bacillus subtilis'': identification of targets of the essential RNase Y.''' </big> | <big>'''RNA processing in ''Bacillus subtilis'': identification of targets of the essential RNase Y.''' </big> | ||
− | <big>Mol Microbiol. 2011 | + | <big>Mol Microbiol. 2011 81(6): 1459-73. </big> |
[http://www.ncbi.nlm.nih.gov/pubmed/21815947 PubMed:21815947] | [http://www.ncbi.nlm.nih.gov/pubmed/21815947 PubMed:21815947] | ||
<pubmed>21803996 21843271 </pubmed> | <pubmed>21803996 21843271 </pubmed> |
Revision as of 09:03, 3 October 2011
2011
- September 2011
- A series of papers deals with RNA processing and degradation in B. subtilis. Three papers establish that RNase Y is the functional equivalent of RNase E from E. coli. Moreover, the role of RNase J1 in endonucleolytic cleavage of the trp leader mRNA is demonstrated.
- Relevant SubtiWiki pages: David Bechhofer, Rick Lewis, Ulrike Mäder, Harald Putzer, Jörg Stülke, RNases, RNA degradosome, RNase Y, RNase Y targets, RNase J1
Lehnik-Habrink M, Schaffer M, Mäder U, Diethmaier C, Herzberg C, Stülke J RNA processing in Bacillus subtilis: identification of targets of the essential RNase Y. Mol Microbiol. 2011 81(6): 1459-73. PubMed:21815947
- August 2011
- Chi et al. demonstrate that S-bacillithiolation of the repressor OhrR and of four enzymes of the methionine biosynthesis pathway protects the B. subtilis cell against hypochlorite stress.
- Relevant SubtiWiki pages: Haike Antelmann, Dörte Becher, Ulrike Mäder, resistance against oxidative and electrophile stress, Spx regulon, CtsR regulon, PerR regulon, OhrR, MetE, YxjG, PpaC, SerA, YphP
Bui Khanh Chi, Katrin Gronau, Ulrike Mäder, Bernd Hessling, Dörte Becher, Haike Antelmann
S-bacillithiolation protects against hypochlorite stress in Bacillus subtilis as revealed by transcriptomics and redox proteomics.
Mol Cell Proteomics: 2011, 10(11);M111.009506
[PubMed:21749987]
[WorldCat.org]
[DOI]
(I p)
- July 2011
- Domínguez-Escobar et al. from Rut Carballido-Lopez' lab and Garner et al. report that movement of actin-like filaments is driven by the peptidoglycan elongation machinery. Both papers suggest that the MreB-like filaments serve to restrict the mobility of the peptidoglycan synthesizing machinery
- Relevant SubtiWiki pages: Rut Carballido-Lopez, David Rudner, MreB, MreBH, Mbl, MreC, MreD, PbpA, RodA, RodZ, penicillin-binding proteins, cell shape, cell wall synthesis, cell wall biosynthetic complex
- Domínguez-Escobar et al. from Rut Carballido-Lopez' lab and Garner et al. report that movement of actin-like filaments is driven by the peptidoglycan elongation machinery. Both papers suggest that the MreB-like filaments serve to restrict the mobility of the peptidoglycan synthesizing machinery
Ethan C Garner, Remi Bernard, Wenqin Wang, Xiaowei Zhuang, David Z Rudner, Tim Mitchison
Coupled, circumferential motions of the cell wall synthesis machinery and MreB filaments in B. subtilis.
Science: 2011, 333(6039);222-5
[PubMed:21636745]
[WorldCat.org]
[DOI]
(I p)
Julia Domínguez-Escobar, Arnaud Chastanet, Alvaro H Crevenna, Vincent Fromion, Roland Wedlich-Söldner, Rut Carballido-López
Processive movement of MreB-associated cell wall biosynthetic complexes in bacteria.
Science: 2011, 333(6039);225-8
[PubMed:21636744]
[WorldCat.org]
[DOI]
(I p)
- A comment on these papers:
- June 2011
- Oppenheimer-Shaanan et al. from Sigal Ben-Yehuda's lab report that cyclic di-AMP acts as a secondary messenger that couples DNA integrity with progression of sporulation
- Relevant SubtiWiki pages: Sigal Ben-Yehuda, DisA, YybT, metabolism of signalling nucleotides, cell division
- Oppenheimer-Shaanan et al. from Sigal Ben-Yehuda's lab report that cyclic di-AMP acts as a secondary messenger that couples DNA integrity with progression of sporulation
- May 2011
- Miles et al. identified the enzyme for the key final step in the biosynthesis of queuosine, a hypermodified base found in the wobble positions of tRNA Asp, Asn, His, and Tyr from bacteria to man
- Relevant SubtiWiki pages: QueG, translation
- Miles et al. identified the enzyme for the key final step in the biosynthesis of queuosine, a hypermodified base found in the wobble positions of tRNA Asp, Asn, His, and Tyr from bacteria to man